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1. Introduction

In most treatments of physics involving thermal considerations
it is tacitly (and sometimes explicitly) assumed that the absolute
temperature T is non-negative. However, it is of interest to consider
the contrary possibility. In this regard three questions arise:

(i) Is there evidence of such temperatures in real physical
systems?
(ii) In what way does the possibility of negative temperatures
impact upon the structure of thermodynamics?
(iii) What (if any) statistical mechanical models can be made to
exhibit this property?

Theoretical physics, that is the development of mathematical
models aiming to reflect in some way the physical reality around us,
has an impetus of its own. Models are extended and generalized
according to their own internal logic.! Thus the question posed by
this paper regarding negative temperatures would not be rendered
pointless if there were at the moment no evidence for negative
temperatures in real physical systems.? On the other hand, if there

* King's College London, Department of Mathematics, London, WC2R 2LS, UK.
E-mail address: david.lavis@kcl.ac.uk.
! An example of this being the proliferation of spin and vertex models in the
statistical mechanics of lattice systems (see, for example, Lavis, 2015).
2 And the same would be the case with regard to negative heat capacities (see
Sect. 2.4).
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is good evidence, it becomes necessary for this to be modelled in
theoretical systems.

In Sect. 1.1 we approach an answer to (i) by first exploring the
kind of properties that a system needs to have in order to exhibit
negative temperatures, following this with a brief survey of the
experimental systems with these properties.

It is important at this stage to highlight a difference between our
account of thermodynamics in Part I and of statistical mechanics in
Part II. In the former we consider both thermodynamic states,
specified by controllable macroscopic variables, and also processes
between them, in particular adiabatic processes, whereas our
concern in the latter is solely with the possible states of the system.
Thus, in respect to an answer to question (ii), the effect of negative
temperatures resides not only in the thermodynamic states having
this property but also in processes between them. This is of
particular importance in the analysis of cycles of processes in Part I,
Sect. 2.5, leading to the modifications of the Kelvin—Planck and
Clausius versions of the second law consequent upon the cycles
being between reservoirs with negative temperatures and between
two reservoirs with different signs for the temperature. The last of
these would, of course, involve the cycling system undergoing
adiabatic processes between states where the temperatures are of
opposite sign. This analysis is applied to both the cases where the
cycling system and the reservoirs have positive heat capacity,
meaning that entropy increases in the adiabatic processes and
where the cycling system and the reservoirs have negative heat
capacity, so that entropy decreases in the adiabatic processes.
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Whether processes between states with opposite temperature signs
are possible is a question deferred to the end of Part I in Sect. 2.6.

Much of the recent discussion of negative temperatures in
thermodynamics and statistical mechanics has centred around a
dispute about the correct formula for the entropy of a thermally
isolated system and the consideration of this question is a key
element in the answer to (iii). In Sect. 1.2 we give a brief intro-
duction to the elements of this dispute with a detailed account of
the statistical mechanics involved presented in Part II.

In Part Il we exploit the account of statistical mechanics in Part
Il to enter into a fuller discussion of the problems arising from the
inclusion of negative temperatures in statistical mechanics and to
the disputes engendered thereby, assessing the various arguments
presented for the choice of either the surface or bulk entropy as the
appropriate quantity for the microcanonical/micromechanical dis-
tribution. We explore the weaknesses and strengths of the cases for
both the bulk and surface entropies, where the treatment of small
systems has been a recurring theme. However, for the main subject
of interest of this work, a more significant issue is, as we show, the
inability of the bulk entropy to provide for the possibility of
negative temperatures.

Our conclusions are given in Sect. 4.6 and supporting material is
contained in Appens. A—D.

1.1. Salient properties of physical systems

To understand the physics involved here consider a finite® sys-
tem at temperature T with continuous or discrete energy spectrum
in the domain [Ep;,, Emax]- The probability of the system having
energy E is P(E)xw(E)exp(— E/T), where w(E) is the density of
states.* If P(E) is dominated by the exponential term then, for
positive temperatures, states with lower energy are more probable
and, since P(E) must be normalizable over [Ein,Emax], Emin must be
finite to prevent divergence of the normalizing sum or integral. This
situation is modified if w(E) has the effect of suppressing P(E) at low
energies obviating the need for a lower energy bound. A similar
situation occurs for negative temperatures. With the exponential
factor dominating P(E), states with high energy are more probable
and Epax must be finite. However, again, as we shall see in exam-
ples described below, this situation is modified when w(E) has the
effect of suppressing P(E) at high energies leading to convergence
of the sum or integral at infinite positive energy.

To explore further we consider the simple example of a system
consists of N identical non-interacting atoms each with m energy
levels g <& < -+ <em_1 (Where we include the possibility thatm =
). Then

m-1
E= Z nje;,
i=0

(1.1)

m—1
N = Z n;,
i=0

where n; is the number of atoms in level i, and the most probable
values for these distribution numbers satisfy

n;/ng = exp|(eg — &) /T, (1.2)

3 Implications of the thermodynamic limit, where the system becomes infinite,
are discussed in Sect. 3.2.

4 See the footnote on page 4 with respect to the absorption of Boltzmann's
constant into the definition of temperature. For the sake of simplicity this example
is formulated in terms of the canonical distribution with the system in contact with
an isothermal reservoir at temperature T. The role of that distribution in this work,
including its admission of negative temperatures, is through the equivalence of
distributions, as described in Sects. 3.2 and 3.6.

which, for positive T, is monotonically decreasing with increasing i.
The energy E has a minimum value E,,;, = Neg when each atom is in
its ground state eg. The probability of this being the case ap-
proaches unity as T— + 0. The energy E has, of course, from (1.2), a
set of discrete values and if it is increased through this sequence
from its minimum value® the temperature must increase to satisfy
(1.1) and (1.2). If m = oo there is no limit to the amount of energy
which the system can accommodate with T— o as E—co. If m is
finite Emax = Ney_1. As soon as E > Ney,_», n,,_1 must be non-zero
and the ratios

i/ _1 = expl(em-1 — &)/T] (1.3)
are well-defined. As E — Emax, 11j /1 —0, fori =0,1,...,m— 2. For
(1.3) to satisfy this condition T must be negative with T— — 0 as
E— Emax. Somewhere along the way as E increased from E,;, to
Emax the temperature of the system changed from positive to
negative. As E increases from E;, or decreases from Emax, |T| in-
creases to satisfy (1.2) or (1.3) approaching the uniform distribution
n; =N/m, V i,as T—+oco With E—>N(eg + &1 + - + ep,_1)/m, which
is therefore the ‘crossover’ between positive and negative
temperatures.

This picture of negative temperatures, situating them above
T = o rather that below T = 0 and leading to them being regar-
ded as ‘hotter’ that positive temperatures, is not restricted to this
model as will be evident from our discussion in the rest of the
work.®

In this simple model both E;, and Emax are finite, and the
latter condition is instrumental in the occurrence of negative
temperatures. However, as we have already indicated, such a
bound is not necessary. All that is needed in the construction of
simple models is some contribution to the density of states
which applies a sufficient depression of P(E). In the case of the
model of Matty, Lancaster, Griffin, and Swendsen (2017, Sect. V5)
this is achieved by choosing a density of states which is expo-
nentially decreasing with energy increase. In the same spirit in
Sect. 3.4.2 we show that if, for the B,; model of Sect. 3.3.2,
exponentially decreasing degeneracies are imposed on the en-
ergy levels, then the behaviour of the %, model exhibits both
positive and negative surface temperatures very similar to the
finite states case 3s3.

Notwithstanding the evidence of these rather pathological
models, most experimental work yielding evidence of negative
temperatures has been for systems with a finite set of discrete
energy levels. In particular nuclear paramagnetic resonance ex-
periments, where assemblies of nuclear spins, coupled to each
other by spin-spin interactions, constitute a subsystem loosely
coupled to a lattice. Such experiments on LiF crystals by Pound
(1951) and Ramsey and Pound (1951), where a magnetic field
applied to nuclear spins is rapidly reversed, have been interpreted
by Purcell and Pound (1951) as leaving the system in a state which
has a negative temperature. The problematic aspect of this work is
in the adoption of the notion of a ‘spin temperature’ specific to the
subsystem of nuclear spins. This, however, has been studied by
Abragam and Proctor (1958), who showed that it can be defined in
such a way that it is identical to the thermodynamic temperature of
the lattice. They (Abragam & Proctor, 1957) also performed their
own experiments on LiF, which they describe as “the first examples

5 It should be emphasised that the varying of E with the consequential change in
T is not intended to represent a sequence of thermodynamic processes, but is
simply a way of exploring the mathematical properties of the model.

6 The temperature T; is according to (6.4) hotter that the temperature T,if
1/T,>1/ Ty, irrespective of the signs of T; and T».
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of calorimetry carried out with systems at negative temperatures.”
With the ordering of temperatures described above with negative
temperatures higher that positive temperatures, studies of nuclear
antiferromagnetism in rhodium by Hakonen, Vuorinen, and
Martikainen (1993), which have reached temperatures of 280 pK
and —750 pK, could, at the time of publication be described,
respectively, as the lowest and highest temperatures ever achieved
and measured. However, more recently, using a new cooling
method, in which a time-varying magnetic field gradient is applied
to an optically trapped cloud of cold atoms in a mixture of two
internal states with different magnetic moments, Medley, Weld,
Miyake, Pritchard, and Ketterle (2011) have achieved effective
spin temperatures of +50 pK.

As we have indicated, negative temperatures are most easily
achieved in systems where a discrete-valued energy has a natural
upper bound. The presence of kinetic energy, even in lattice sys-
tems where it is split into distinct bands makes the implementation
of an upper bound a challenge, because potential and interaction
energies need to be limited as well (Mosk, 2005; Rapp, Mandt, &
Rosch, 2010). However, this problem has been overcome by Braun
et al. (2013) (see also Carr, 2013, for a discussion of this work).
While the lattice of their system gave a natural upper bound to the
kinetic energy by the formation of a band gap, they were able to
make the potential energy negative by using an anti-trap on top of
the lattice, taking the shape of an inverted parabola. They then
tuned the interactions to be negative, with the net result that all
three energies had an upper bound.

1.2. Statistical mechanical considerations

The main contenders for the entropy of a thermally isolated
system are, as described in Sect. 3.4.1, the surface entropy and the
bulk entropy.” The salient point is that the bulk entropy is a
monotonically increasing function of energy; meaning that the
temperature cannot be negative. If it can be shown that the surface
entropy (which is not necessarily a monotonically increasing
function of energy) is unviable as an expression for the thermo-
dynamic entropy and if no other non-monotonic candidate for the
entropy is proposable then it follows that the bulk entropy is the
correct choice. This is the argument made by Dunkel and Hilbert
(2014a) who conclude in consequence that “consistent thermo-
statistics forbids negative absolute temperatures”, with their po-
sition supported by Hilbert, Hanggi, and Dunkel (2014), Campisi
(2015) and Hanggi, Hilbert, and Dunkel (2016). Counter argu-
ments in favour of the surface entropy have been made by Vilar and
Rubi (2014), Swendsen and Wang (2015, 2016), Wang (2015),
Poulter (2016), Buonsante, Franzosi, and Smerzi (2016) and Abrahm
and Penrose (2017).2 There are two problems with the Dunkel and
Hilbert position. The first and most obvious one is that, if the
experimental results are to be believed, then negative temperatures
do occur in nature and if they cannot be predicted by “consistent

7 In some of the literature the surface and bulk entropies are refer to, respec-
tively, as the Boltzmann and Gibbs entropies. One reason to avoid this usage is to
remove any confusion, as in the references in Buonsante et al. (2016), between this
dispute about microcanonical entropy, with the different discussion (see, for
example, Lavis, 2005, 2008) about the rival merits of the Boltzmann and Gibbs
formulations of statistical mechanics.

8 Dunkel and Hilbert's contention was also criticised by Frenkel and Warren
(2015) and Schneider et al. (2014), with reposts in Dunkel and Hilbert (2014b)
and Dunkel and Hilbert (2014c) respectively.

9 It is appropriate to note at this point that Dunkel and Hilbert (2014a) argue (i)
that the experimental determinations of temperature yield the surface (Boltzmann)
temperatureT,,, which can be negative, but (ii) that this is not the thermodynamic
temperature, which is the positive bulk (Gibbs) temperature Tg. As will be clear
from our account in Part Il we agree with (i) but disagree with (ii).

thermostatistics”, that is to say statistical mechanics, there must be
something wrong with the theory.” The second is that the argu-
ments for the inadequacy of the surface entropy are almost all
based on an analysis of systems with Hamiltonian dynamics, which,
in the absence of some fairly serious modifications do not have an
upper bound on the kinetic energy and do not exhibit negative
temperatures. Of course, this latter point in itself does not invali-
date the arguments of Dunkel and Hilbert. If the same entropy
function is to be used, as one might imagine it should be, to model
all thermally isolated systems in statistical mechanics, it would be
necessary only to show that the surface entropy were inadequate
for a system with Hamiltonian dynamics for their argument to hold.
For this reason in Part II, Sects. 3.1-3.6 we have included a fairly
detailed description of such systems together with an account of
the discrete-energy B,; system, which is a special case of the
example used in Sect. 1.1. This allows numerical calculations for 33,
which exhibits negative temperatures, and 8., where there is no
upper energy bound. In the latter case the region of negative
temperatures disappears unless, as indicated above and shown by
the modification we subsequently make to the model, a factor is
introduced in the density of states which has the effect of suffi-
ciently depressing the surface entropy at high energies.

The argument in favour of a particular entropy form for a ther-
mally isolated system'° is also, of course, the case for the choice of a
particular thermodynamic temperature for a thermally isolated
system. That being said it is appropriate at this point to describe
another contender proposed by Matty et al. (2017) and Swendsen
(2017a, b, 2018). They introduce the canonical distribution and,
while they use it, as we do in Sect. 3.6, to adjudicate between the
bulk and surface entropies and in favour of the latter, they go rather
further. They argue (Matty et al., 2017, p. 474) “that if a system of
interest has ever been in thermal contact with another system,
separation will never leave either system in a quantum eigenstate.
Consequently the microcanonical ensemble is not an appropriate
tool for calculating thermodynamic properties of quantum sys-
tems.” Although this quote is couched in terms of a quantum sys-
tem they assert on the following page that the same argument
applies to the classical case. There the argument is that realistic
models are ones where the system is, or has been, in thermal con-
tact with another system so that its energy E is not known but
fluctuates, or in the latter case has fluctuated, with the internal en-
ergy U identified with (E). This is the situation we discuss in Sect.
3.5.1, where E 4 and E  are respectively our system of interest and
the system with which it is in thermal contact. The energy distri-
bution of B 4 is given by (12.1) and, if E g is very large relative to E 5
(or is an isothermal reservoir, as we have defined it in Sect. 2.5), this
becomes the canonical distribution given by (12.10), from which
the entropy is then calculated. However, they also argue
(Swendsen, 2017b, p. 12) for the use of the canonical entropy even
“if the system has instead been in thermal contact with a system
that is the same size or even smaller”. In fact they go further that
this by supposing an historic contact with a chemical reservoir of
particles of chemical potential u (say) so that N is replaced by (N),
meaning that the grand canonical distribution is even better for
calculating the entropy. This is, of course, standard for systems
currently in contact with (large) isothermal and chemical reservoirs.
And its use for ‘isolated’ systems is attractive since it can be shown
that the canonical and grand canonical distributions are “without
the weaknesses which have sparked criticism of the [surface] en-
tropy” (Swendsen, 20173, p. 9).

10 Of course, the whole of our discussion is predicated on our system also being
chemically isolated; that is the number N of microsystems is fixed.
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However, this account has a cost. It means that, at least in this
instance, we are denying the possibility that a system can be
modelled by thermal and chemical isolation with given values for E
and N; that realism demands that the model must allow for an his-
toric thermal and chemical interaction with the environment. This
would seem to open a wider question related to the whole of model
building in theoretical physics, which is based in part on simplifica-
tion, the assessment of the relative importance of a range of in-
teractions for the salient features of interest. This leads, for example,
to models for the mechanics of bodies moving without friction and
fluids flowing without viscosity. The supposition of thermal isolation
is a simplification of this kind, the absence of which, as we shall see in
Sect. 2.2, would make it impossible to define adiabatic processes.

2. Part I. Thermodynamic considerations
2.1. States and variables

The states of classical thermodynamics are specified by a
(usually) small number of macroscopic variables, which can be
divided in three ways: (i) extensive variables which scale with the
size of the system and intensive variables which are invariant
under scaling; (ii) independent and dependent variables, the
former being controllable variables, available for manipulation by
an exterior environment or experimenter and the latter respond-
ing according to the nature of the system,; (iii) mechanical, used in
a wide sense to include, if they are present, both magnetic and
electrical variables and in contradistinction to thermal variables.
Variables of mechanical extensive type are referred to as defor-
mation variables and to each is associated an intensive variable,
(pressure to volume, magnetic or electric field, respectively, to the
magnetic or electric moment). One of each pair of variables is
independent and controllable. In most cases the intensive me-
chanical variable is most easily envisaged as independent although
for a fluid one can take either the pressure or volume as inde-
pendent. The characteristic feature of a thermodynamic, as distinct
from a mechanical, system is the presence of at least one thermal
variable. A system with exactly one thermal variable is called
simple'! and that thermal variable can be identified as the internal
energy U. There are many different selections of variables which
can be used to specify the thermodynamic state of a system. We
choose the vector X:= ((XT, XP)),'> where XT is the
nT—dimensional vector of thermal variables and XP is the
n P—dimensional vector of deformation variables. It is convenient
to use the symbol E to denote both the thermodynamic system
and its space of states. In the latter sense E is an open convex set
in R"™+1 for some integer n > 0."° For a simple systemnT =1,nD =

nand X T is the scalar XT = U. Given the system E, there exists
scaled systems E(2), V 1> 0, with AXeE(}), V X<E. And for two
systems E; and E,, there exists a Cartesian product system E; x
H,, envisaged physically as E; and E, placed side-by-side without
any physical or mechanical interaction, with (X{,X5)€E; x &y, V
X1 <€E; and X, €E;,. We shall henceforth suppose that our sys-
tems are simple or Cartesian products of simple systems, where

nT becomes the number of components of the product. The

" Lieb and Yngvason (1999, pp. 41,45) define a simple system as one which has
this property together with satisfying their Axioms S-I to S-III.

12 Double brackets are used to display vector components in Z (but not the phase
spacel’), as distinct from the representation of the elements of a Cartesian product
of systems.

13 Although in the case where Z is the union of two convex subspaces separated
by a planar surface (represented by the line PQ in Fig. 3) it is convenient to attach
the boundary to both subspaces.

internal energy, identified as the sole thermal variable of a simple
system, is a primitive quantity of thermodynamics, changes in
which are given by the first law. It is without a natural conjugate
intensive variable.'* Alternatively the thermal variable could be
identified as the entropy S with conjugate variable the tempera-
ture T, but in most accounts these are derived quantities appearing
later in the analysis. Indeed, if the entropy is given as a piecewise
differentiable function of the components of X,

e (5205, 50

({1 D) £ (X)
“\txy Ty T ) )

gives the (absolute) temperature T(X) and the deformation inten-
sive variables £¥(X), j = 1,2, ..., n."> This, together with higher-
order derivatives of the entropy, which yield the response func-
tions, encapsulates the behaviour of system. A primary task of
thermodynamics is to establish the existence and properties of
entropy and temperature.’® In the next section (together with
accompanying appendices) we briefly outline how this is done by
Lieb and Yngvason (1999) 7 and by accounts, like those of
Landsberg (1956, 1961) and Buchdahl (1966), which take as their
starting point Carathéodory's statement of the second law. As we
shall see, this reveals what Marsland, Brown, and Valente (2015)
refer to as an ‘ambiguity’ in both formulations.

(2.1)

2.2. Adiabatic Processes

All processes X — X' between states X, X' €E are a result of an
outside intervention manipulating the controllable variables.'®
Fundamental to any presentation of thermodynamics is a subset
of processes, called adiabatic, which are defined by specific re-
strictions on the types of manipulations of the controllable vari-
ables which are permitted to effect the process. An assumption of
thermodynamics, usually kept implicit, but made explicit by Norton
(2016, p. 45) in his existence assumption and Lavis (2018, p. 139) in
his hypothesis of accessibility and recoverability, is that for every
pair of states X, X' €ZE there exists a process X —X'; some manip-
ulation of the controllable variables can be found to take the state of

4 Although, as can be seen in (4.13), thermodynamics can be formulated to make
it conjugate to the inverse temperature.

15 0Or, as in the case of the pressure in a fluid, minus the intensive variable. At this
point it is convenient to clarify the dimensionality of the thermodynamic variables.
It is straightforward to show that, by scaling with respect to suitable constants, T
and £¥ can be made of the dimensions of energy (] = m2kgs~2) and S, X°@ and the
heat capacities made dimensionless. This is the field—extensive variable repre-
sentation of Lavis (2015, Sect. 1.1), where scaling for the pair (S,T) is effected using
Boltzmann's constant Kg.

16 An alternative to this is an account like that of Callen (1985) and Swendsen
(2017b) based on postulates which assert the existence and properties of entropy.
The entropy maximization principle in Callen's Postulate II excludes entropy
decrease and his Postulate III excludes the possibility of negative temperatures
thereby avoiding the ambiguities identified by Marsland et al. (2015). Postulate III
was subsequently modified by Swendsen to allow for negative temperatures.

17 This is the most comprehensive account of their work, with briefer versions in
Lieb and Yngvason (1998) and Lieb, Yngvason (2000). The extension to non-
equilibrium is given in Lieb and Yngvason (2013).

18 The existence of a process X—X' does not imply the passage along a sequence
of (equilibrium) states in & from X to X. With some exceptions (e.g. Giles, 1964)
accounts of classical thermodynamics restrict the states of the system to equilib-
rium states, meaning that the only defined states of a process are its endpoints. As a
consequence a process is specified in terms of its endpoints together with a
description of the manipulations of the controllable variables used to bring it about.
This point is discussed in more detail at the beginning of Sect. 2.3.2.
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the system from X to X'. Conversely, as we shall see, it is of crucial
importance for thermodynamics, particularly for the second law
which would be otherwise false, that there exist pairs of points X,

X' € E for which there is no adiabatic process XﬁX’.

The assertion that “an adiabatic process is characterised physi-
cally by the absence of any thermal interaction between the system
and its environment” (Boyling, 1972, p. 36) leaves some uncertainty
about what counts as a thermal interaction, or more specifically
what is allowed as a ‘non-thermal’ interaction. According to Lieb
and Yngvason (1999, p. 17)'°:

A state X' is adiabatically accessible from a state X if it is possible
to change the state X to X’ by means of an interaction with some
device (which may consist of mechanical and electrical parts as
well as auxiliary thermodynamic systems) and a weight, in such
a way that the device returns to its initial state at the end of the
process whereas the weight may have changed its position in a
gravitational field. Thus the only work done is by/to the weight

A
X<X .= { 3 at least one adiabatic process X —A>X’} . X' is adiabatically accessible from X,

A
X«£X = { 7 an adiabatic process Xé»X’} :

and the loss/gain in its potential energy will be equal to the gain/
loss of internal energy in the system.

The salient characteristic of an adiabatic process, as stated in the

deformation variables. We should, however, note that the comment
by Lieb and Yngvason (1999, p.18) (Joule, 1850, p. 18) that:

In the usual parlance, rubbing would be an adiabatic process,
but not electrical ‘heating’, because the latter requires the
introduction of a pair of wires through the ‘adiabatic enclosure’.

is at variance with Buchdahl (1966, Sect. 1.8) who asserts that:

[A system in an adiabatic enclosure] may incorporate a stirrer, or
an electrical resistance through which a current may be passed
from outside the enclosure, and so on. Then the passage of such
a current, movement of the stirrer, variation of the deformation
coordinates, are all to be counted as mechanical processes.

There is, however, a novel element in Lieb and Yngvason's defini-
tion and that is the inclusion of an “auxiliary thermodynamic

system”.??

An adiabatic process from X to X’ is denoted by xAx and itis
then useful,?! although not essential, to define®”

(3.1)

X'is adiabatically inaccessible from X,

and

A A A
X>=<X = {X<X’ A X <X} X is adiabatically recoverable from X',

A A A
X<=<X' = {X<X/ A X {X} X is adiabatically irrecoverable from X',

A ! A ! /A
XoX :=J{X<X' v X<X

first law, is contained in the last sentence in this quote; the work
done on/by the system by/on its environment is equal to the in-
crease/decrease in internal energy. Lieb and Yngvason make this
specific by following Joule (1850), who used a weight falling under
gravity as a measure of the work done on a system in his discus-
sions of the mechanical equivalence of heat. Once this is done all
manner of ingenuity can be used to link the falling weight to the
system, leading to a variety of possible changes to the state of the
system, predicated only on the linking mechanisms returning to
their initial states. An obvious example is a set of levers causing the
expansion or compression of a fluid. Here there is a change in a
deformation variable, although a too close association between
adiabatic processes and changes in deformation variables would be
a mistake. A falling weight can be used to cause rubbing, stirring or
electrical heating of a system without any change in the

19 We have adapted slightly to our notation.

(3.2)

X is adiabatically comparable to X'.

In terms of this notation, let

A
Cth—I(8) := { vXeEandany./ x, 3 X ./ xsuchthatX £#X’ },
(3.3)

20 This lies at the heart of the proof that all Cartesian products like &; x B, of
simple systems E; and E, are comparablg. That is to say, for a\ll pairs of states X1,
X'1 €84 and X;, X', €E; either (X71,X5)<(X],X%) or(X},X5) < (X1,X2).

21 Landsberg (1961); Giles (1964); Buchdahl (1966); Lieb and Yngvason (199%).

22 Lieb and Yngvason use < to denote adiabatig accessibilits& while we use < to
denote this more restricted accessibility, with X> <X’ and X < <X’ replacing X > <
X' andX < <X/, respectively.
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where .7 xCE is an open neighbourhood of X. Then we have
Carathéodory's first version of the second law*>:

Cth—I: Cth—I(8) is true for all thermodyamic systems E.

2.3. Derivations of entropy and absolute temperature
It is convenient to introduce, in advance of our discussion of the

derivations of the entropy S(X) and temperature T(X) the logical
statements:

U(z) := {U(X’) >/ < UX), v XA X' €& such that X P

D’
= ?

(4.1)
S(x) == {S(X/) >/ < S(X),V xﬁ»x’ei}, (4.2)
T(x) = {[TX) " 2/ <0,v Xe&}, (4.3)
together with
C(+) = {C(X) >/<0,V¥ Xei}, (4.4)

for the heat capacity C(X) at constant deformation variables, where

& may be the whole of the thermodynamic space E or, subject to a
positive answer to question (ii) below, a subspace of E. In principle

one might suppose that & could be any one of sixteen types
correspond to the choices of signs in (4.1)—(4.4). Given that the only
possible overlaps between subspaces of different types are
boundaries where one or more of the conditions U(X') = U(X) or

S(X') =S(X), ¥ X3 X, or [T(X)]"! = 0or C(X) = 0 V X apply,2* the
following questions will then be addressed:

(i) Are all sixteen choices of sign thermodynamically possible?

(ii) Can subspaces of different types coexist in the same system?

(iii) Is equilibrium possible between systems or subsystems of
different type?

(iv) Given that subspaces of different type can coexist in the same
system are adiabatic processes possible between states
within them? In particular is an adiabatic process possible
between states with opposite temperature signs?

Questions (i)and (ii) are addressed in Sects. 2.3.1 and 2.3.2, and
questions (iii) and (iv) in Sects. 2.4 and 2.6, respectively.

23 As noted by Uffink (2001, p. 363) this is the preliminary version the truth of
which, for all systems, Carathéodory (1909) proposed as the second law. He then
proposes a stronger version which he adopts as his Axiom II (Carathéodory, 1909),
p. 236). The logical statement corresponding to (3.3) has been translated by Uffink;
with  slight changes to conform to our notation it becomes:
Cth—II(E) := {V Xe& andany./ x,3 YE./ x and /'y C./ x such that, ¥V X' e
Ay, X#X'} And the second version of the law Cth—Il, asserting that Cth—II(E) is
true VE replaces Cth—I. Since Cth—II=Cth—I, the latter is sufficient for our
purposes.

24 As observed in the footnote on page 4, the openness of & is modified by the
inclusion of its boundary with the other subspace or subspaces. That the boundary
between positive and negative temperatures is expressed in (4.3) in terms of in-
verse temperature is suggested by the example in Sect. 1.1.

2.3.1. The Lieb and Yngvason account

At the core of this approach is a set of axioms of which Cth—lis a
consequence (see Sect. A.1). In all there are fourteen axioms (Lieb &
Yngvason, 1999, pp. 88—89),%> A—I to A—VII, S—I to S—IIl and T—I to
T—V. For present purposes in the summary in Appen. A only A—I to
A-VII are required,’® although for convenience we have stated S—I
as Hypotheses UAI(E) given in (A.2).” Comparability and the
Comparability Hypothesis ACP(Z) given in (A.1) play an important
role in this account of thermodynamics. In particular forward sec-
tors are nested iff ACP(E). Since the nesting property can be proved
for simple systems (Lieb & Yngvason, 1999, Thm. 3.7) it follows that
ACP(E) is true for all simple systems. That the forward sector .7 x
has a unique tangent plane ® x with normal, given by (2.1), having
components which are locally Lipschitz continuous with respect to
X is the assumption encapsulated in Lieb and Yngvason's Axiom
S—II, which also assumes that ® x does not contain the thermal axis

7 ¥ through X. It follows that £ = E)ud yUE ), where E% are

=

the open sets for which X T=X T on 2£/n~ §. Since 7 x is convex
we have two possibilities:

(a) 7 x<E™), when X is called a positive point,
(b) 7 x<E), when X is called a negative point.

It is easy to show that if X is a positive point then any Ye:'/)T( with
Y T> X Tis also a positive point, and using Thm. A1 thatany Ze ' %
with ZT <X T is also a positive point. It follows that the whole of
J)T( consists of positive points (is a positive thermal axis) if X is a
positive point, with a similar result for negative points. In their
Thm. 3.3 where they prove this result Lieb and Yngvason (1999)
further prove that if, for some Xe&, ' % is a positive/negative
thermal axis then ' is a positive/negative thermal axis for all
Y €E. This would then imply that E is of one of two types where:

e U(+) holds, as in Fig. 1(a), called a positive-simple (p-simple)
system,

e U(—) holds, as in Fig. 1(b), called a negative-simple (n-simple)
system.

This binary division of systems would prevent the possibility that
the space E of a system could contain two subspaces within which
T(+) and T(—) are respectively true. To understand how this di-
chotomy can be resolved we examine the second part of the proof
of Lieb and Yngvason's Thm. 3.3. The argument is a follows. For X
and Y quite close together and X a positive/negative point there is
point 8.7 xnY \T( which must be positive/negative and thus ¥ \T( isa
positive/negative thermal axis. So the thermal axes of E are either
all positive or all negative. It follows that in order for E to contain
both positive and negative thermal axes it must be the union £(Pu
2N of a p-simple and an n-simple system, each with its own
nested set of forward sectors, where E ") and 2V are convex and
the interface is planar and parallel to the thermal axis. as shown in
Fig. 3.

Before investigating the geometry of this situation we consider
further the properties of a single p-simple or n-simple system for
which Lieb and Yngvason's account (see Appen. A.2) provides a
definition of entropy S(X) satisfying S( + ); that is the law of entropy
increase, meaning that entropy increases upwards along the

2> We have taken the liberty of changing their Arabic numbers to Roman
numerals.

26 And T—I to T—III are discussed in Appendix B.

27 In fact this is implied by Axiom T—IV, so Lieb and Yngvason have only thirteen
independent axioms.
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Fig. 1. The forward sector .7 x (shaded) for (a) a p-simple system and (b) an n-simple system. The open set E is bounded by the broken curve and .7 x is relatively closed, being
bounded within E by 0.7 x. PQ is the thermal axis )T( through X. The horizontal axis signifies the n-dimensional space of the deformation variables. An adiabatic process from a
point on 9.7 x to another point in E is possible if and only if that point lies in the relatively closed set .7 x.

T T
xT, xT, x

(a)

(b)

Fig. 2. S(X T, X D)) plotted against X T for (a) a p-simple system where S(+)AU(-+)AT(+) applies and (b) an n-simple system where S(+)AU(—)AT(-) applies. The arrows denote

possible adiabatic processes, A to B in (a) and B to A in (b).

xT

xD

Fig. 3. A system where 2 := Z(PUE(N) The plane PQ separates the p-simple system
2(P on the left from the n-simple system 2N on the right. The labelling of states on
the dotted line is the same as in Fig. 6.

positive thermal axis in Fig. 1(a) and downwards along the negative
thermal axis in Fig. 1(b) and the boundaries of forward sectors are
adiabats. Concavity of the entropy function S(X) then follows from
S(+) and Axiom A-VII so that the heat capacity at constant defor-
mation variables is positive; C(+) is true. However, none of the
structure of Lieb and Yngvason's work is able to decide between
systems being p-simple or n-simple. They simply observe (Lieb &
Yngvason, 1999, p. 47, their italics) that:

As far as our axiomatic framework is concerned the direction of
the energy coordinate and hence of the forward sectors is purely
conventional, except for the proviso that once it has been set for
one system it is set for all systems. ... We shall adopt the
convention that they are on the positive energy side. From a
physical point of view there is more at stake, however. In fact,
our operational interpretation of adiabatic processes ... involves
either the raising or lowering of a weight in a gravitational field
and these two cases are physically distinct. Our convention,
together with the usual convention for the sign of energy for
mechanical systems and energy conservation, means that we
are concerned with a world where adiabatic process at fixed
work coordinate can never result in the raising of a weight, only
in the lowering of a weight. The opposite possibility differs from
the former in a mathematically trivial way, namely by an overall
sign of the energy, but given the physical interpretation of the
energy direction in terms of raising and lowering of weights,
such a world would be different from the one we are used to.
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Meaning that they have opted to concentrate on the “world” of p-
simple systems. Their formal definition of temperature is intro-
duced at quite a late stage in their paper, but it is preceded (Lieb &
Yngvason, 1999, p. 44) by the familiar definition (see (2.1)) that

T(X) = (665)(()?) —17

predicated on the condition that entropy “is sufficiently smooth in
order to make sense of [(4.5)].” It follows that S(+)AU(x)=T(+) so
that a conclusion of Lieb and Yngvason's development is that a
system of a single type satisfies:

(4.5)

LY == {S(+) A{ [U(+)AT(+)V[U(=)AT(=)]}} (4.6)
It should be emphasised that this statement is a consequence of the
formal structure of Lieb and Yngvason's approach, neglecting their
informal argument for choosing p-simple systems. That this results
in two types of systems is regarded by Marsland et al. (2015) as an
ambiguity in this approach.”®

The case where E consists of p-simple and n-simple subsystems,
where (with S(+) true) T> 0 and < 0 respectively, is schematically
shown in Fig. 3. The entropy increases upwards in the p-simple
subsystem on the left and downwards in the n-simple subsystem
on the right. The heavy lines are forward sector boundaries, that is
adiabats. States X; and X, could be identified with X3 and X ¢
which feature in the T(+) cycle in Sect. 2.5 and for which S(X 5) =
S(X ¢). They are not connected by an adiabat. The dotted line
through X’; and X', could be regarded as a representation of the
entropy curves in Fig. 2 (a) and (b) or equivalently the first half of
the curve in Fig. 6 with the same labelling of states (if £ were a
union of all four subsystems). Entropy increases from X'; to X and
from X', to Xq. At X where the line crosses PQ, and indeed over the
whole of PQ, 1/T(X) = 0.

2.3.2. The approach based directly on Carathéodory's version of the
second law

Most versions of thermodynamics rely on a certain level of
continuity and differentiability of thermodynamic functions with
appropriate caveats applied in critical regions. The approach of Lieb
and Yngvason is almost free of such analytic assumptions*® and
also of discussion of processes related to curves in E. However, the
standard argument (Buchdahl, 1966, Chap. 5) for deriving the ex-
istence of entropy and temperature from Carathéodory's version of
the second law Cth—I relies heavily on differential forms yielding
curves in E, which are then taken to represent ‘equilibrium
processes’.

Here a little caution is needed. As has been pointed out by many
authors (Cooper, 1967; Lavis, 2018; Norton, 2016), the proposition
that a curve in the space of thermodynamic states can represent an
‘equilibrium’ or ‘quasi-static’ process, with the state of the system
remaining in equilibrium as it traverses the points of the curve, is
oxymoronic. The initiation of any process necessarily involves the
manipulation of the controllable variables which will drive the
system from equilibrium with the return to an equilibrium state
occurring only after a ‘leave-it-alone’ stage (Wallace, 2014), which
allows it to settle down. Equilibrium processes are thus (Cooper,

28 In our discussion of the approach based on Carathéodory's in Sect. 2.3.2 we see
that this is compounded in the eyes of Marsland et al. by a further ‘ambiguity’ in
relation to the direction of entropy change in adiabatic processes.

29 Except, as we have indicated above, their Axiom S—II, which proposes that the
slope of the tangent plane to an adiabatic hypersurface is locally Lipschitz
continuous.

Fig. 4. Comparison of delimitation and demarcation. The curve contains the endpoints
of a sequence of processes, shown as broken lines, which are demarcated by the curve
as proposed by Lavis (2018). The curve from Dy to Dy is representative of the set of
curves which are delimited by the curve as proposed by Norton (2016).

1967, p. 174) “either a contradiction in terms or limits of pro-
cesses through non-equilibrium states which cannot be described
in terms of equilibrium theory.”

There have been two recent proposals for reinterpretation. In
the first of these, called delimitation, Norton (2016) envisaged
(rather in the manner suggested by Cooper) that an equilibrium
process was in fact, as shown in the broken line Dy to D in Fig. 4 a
sequence of non-equilibrium states near to the curve.>’ In the
second, called demarcation, Lavis (2018) proposed, as shown in
Fig. 4, that an equilibrium process from Xy to X; along a curve is
understood to be the set of all sequences of processes
Xo =: X(A9)—>X(A1)— - —X(Am) := X; for all m, where the end-
points of the processes lie on the curve. In this section and
throughout this work we shall adopt the demarcation interpreta-
tion of equilibrium processes.

According to the first law of thermodynamics, if, for X X' €&, X’

. . . . . A .
is adiabatically accessible from X, that is X <X’, then there exists an

adiabatic work function W(A) (X, X'), which satisfies appropriate
transitivity, additivity and scaling properties and which measures
the amount of work done by the system to implement any adiabatic

process X AX’.N This means that the work done by the system
during an adiabatic process depends only on its endpoints
(Buchdahl, 1966, p. 40; Giles, 1964, p. 15) and it can be shown
(Boyling, 1972, p. 38) that*?
WX X)=xT-xT. (4.7)

Particularly in connection with the use of this result in Sects. 2.5
and 2.6, we note that**:

(i) Not all work performed on the system involves a variation of
the deformation coordinates, since “[an adiabatic enclosure]
may incorporate a stirrer, or an electric resistance through
which a current may be passed from outside the enclosure”
(Buchdahl, 1966, Sect. 8).

(ii) Given that here we are considering only one subspace of the
decomposition like that shown in Fig. 3 or equivalently that
E consists of only one such subspace, then we suppose that if,
for two states X, X' €&, S(X) = S(X’) then there exists an

30 The problems associated with the invocation of ‘non-equilibrium states’ and
‘nearness’ are discussed by Lavis (2018).

31 Thus corresponding to the work done by the system on its environment. This
simply amounts to a convenient choice of sign forW(# (X, X’).

32 In fact the proof demands that & is an adiabatically directed set, a condition
which Boyling incorporates into his statement of the first law.

33 In these observations it is convenient to preempt the derivation of the existence
of entropy later in this section.
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xT

possible adiabatic processes, A to B in (a) and B to A in (b).

1
X1
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(b)

Fig. 5. S((XT,X D)) plotted against X T for (a) a p-simple system where S(—)AU(+)AT(—) applies and (b) an n-simple system where S(—)AU(—)AT(+) applies. The arrows denote

XT

Fig. 6. S(XT, X D)) plotted against X T for fixed X °, with ranges for E[ + + [, E[ — + ], E[+—] and E[ — — ]. The labelling of states on the first half of the curve is the same as in

Fig. 3.

adiabat (a curve of constant entropy) in & connecting X and
X'; that is to say is a curve which demarcates sequences of
recoverable adiabatic processes from X to X'.

(iii) If X' := X+ AX, where AX := (AXT, AXDP)), |AX] is
small and W(A (X, X') = — £(X)- AX P, where £(X) is the
vector of intensive variables in (2.1), then, from (4.7),

AXT—£X)-AXP =0, (4.8)
and an adiabatic process x A also exists, that is X>A<X’: X is
recoverable from X'.
(iv) The same mechanisms of implementation apply to the work
done in a non-adiabatic process X—X’, when (4.7) is
replaced by

w=xT-xT41q, (4.9)

where Q =0 is the heat received by the system. (This is effectively a
definition of heat transfer.) Unlike the adiabatic work function,
neither work nor heat is a function of the pair (X, X’) since different
proportions of each can feature in the process X —X'.

Relating this analysis of adiabatic processes to the mathematics

of Appen. B by setting 5(0)(X):: — 1, it follows that a
& (&)—conforming curve (X, X1), that is one on which

dxT - £(X)-dXP =0, v ((de,de)), (4.10)
demarcates sequences of recoverable adiabatic processes. In the
terminology adopted by Lavis (2018) such curves are called
reversible. If X and X’ are connected by a 7 (§)—conforming curve

then X>A<X’ and it follows from Cth—I, that V X< E and any ./ x,
3 X' .7 x which cannot be connected to X by a & (§)—conforming
curve. In most presentations (Buchdahl, 1966, p. 70) this is taken
(by way of Thm.B.1) to justify the assertion that there exists a
function A(X) so that 7 (£/2) is an exact differential >* That is, there
exists a function ¢(X) such that

AX)do(X) =dXxT—£(X)-dXP, Vv X and ((de,de)>
(4.11)

The argument which replaces ¢(X) with the entropy S(X) with the
right additive and scaling properties and A(X) by the absolute
temperature T(X), so that,

34 In fact, as we see in Appen. B the correct condition is slightly more stringent
and given by Carathéodory’s local theorem (Thm.B.2); the curve (X, X’) must lie
entirely in.7" x. (Condition (B.1) is automatically satisfied sinceE(O) (X) = 1) On the
other hand, it is of course the case that, whenn = 1, the differential form is always
integrable. Cth—I and Thm.B.1 are not required to establish (4.11).
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T(X)dS(X) = dX T — £(X)-dX D (4.12)
is standard (see e.g. Buchdahl, 1966, Chap. 5) and will not detain us
here. We conclude from (4.10) that reversible curves, that is curves
which demarcate sequences of adiabatic recoverable processes, are
adiabats.”

We pause to note that (4.12) expressed in the form

T yD)) _ |1 1 EX) 4yD
ds((x X )) =7 X"~ Ty X (4.13)
is equivalent to (2.1). However, (4.12) in the form
dxT = T(X)dS(X) + §(X)-dX D (4.14)

implies a similar form for the gradient of X T only if S(X T, X D)) is a
monotonic function of X T, when S = S((X T, X P)) can be inverted to
giveX T =X T((5,X P)). This condition is that the system is, for all its
parameter values, either p-simple or n-simple, which has been
assumed for the present system or for the subspace of E to which
we have confined ourselves. In the account of Lieb and Yngvason
entropy is defined in such a way as to satisfy (A.5), implying that
entropy does not decrease in an adiabatic process and, as we have
seen above and as is confirmed by (4.12), with dX P = 0, the in-
ternal energy U (:= X T) increases along the thermal axis if T(X) > 0
and decreases if T(X) <0. However, in the account in this section
there is no a priori argument for entropy increase and the full range
of possibilities is revealed by considering either entropy S to be an
independent variable with the internal energy U as a dependent
variable (with corresponding differential form (4.14)) or vice-versa
(with corresponding differential form (4.13)):

2.3.2.1. Approach I: treating entropy S as an independent variable.
The states of & are now specified by X := ((S,X P)) and we want to
~ A -
know if ((S, X)) = : X1<X3 := ((S2, X)). Since it is always
possible for a line of constant entropy to demarcate a sequence of
A A
adiabatic processes, ((S1.X)<((S2.X)) & ((S1. X)) <((S2,
XP)). It is reasonable to assume that the set of states on
71 ={X|X D X1D} adiabatically accessible from X; is a closed

interval; that is S, €[S 11, S 1y, for some S 11 <S 1y. Suppose that S;
is an interior point of [Sq.,S1y]- Then 3 £>0 such that ((Sq,

A
XPN<((S1=AS, X)), v X" and 0< AS<e. Given that this
accessibility can, by means of sequences of processes along adia-

bats, be extended into all points in a neighbourhood of ((S1,X{)),
Cth—I is contradicted and thus S; = S 1 or S; = S qu. It follows that
1 is covered by two sets.” | and .7 y of closed intervals, those of
points adiabatically accessible from their lower and upper bounds
respectively. It is clear that, for S 5 <Sp,

[Sa,;SBl€S 1ASc,Spl€/u = [Sa,SBINSc.Spl=2
[Sa,SBIES xAISc,SpIES xAS A, SBINS ¢, Sp]#*2 =

35 This is, of course, otherwise obvious in the Lieb and Yngvason approach.

It follows from this that, the covering must consist only of half-
infinite members of .7 | or half-infinite members of .7 ;. That is,

S$1<S;: (Assertion S(+)),
o\ A b 155
((Slvxl )) <(<52’X2 >>©{51 Zorsz . (Assertion S(—)),

(4.16)

and it is easy to see that, for any system E, either the
entropy increasing condition S(+) or the entropy decreasing
condition S( — ) applies for all adiabatic processes.

2.3.2.2. Approach II: treating internal energy U as an independent
variable. The states of & are now specified, as in all our previous

discussion, by X := ((U,X P)) and we want to know whether ((Uj,
XDy =: X4 sz := ((Uy, X)). Here the only decidable case is
when X? = XP and we consider the accessibility condition ((Uy,
XP) =:Xq QX’z := ((Us, XP)). Again we assume that the set of
states on 71 : = {X|X P = X }accessible from X; is a closed in-

terval; in this case U, €[U 11, U 1y, for some U | | <U 1 y. Following
Approach I we now need to show that U; cannot be an interior
point of [U 1, U 1y]. If this were the case then there would exist ¢ > 0

A
with ((Uy, XP) < ((U1=AU, X)), V 0< AU <e. But this is not
sufficient to contradict Cth—I. For that we need ((Uy,
A
XP)2((UAU, XP+ AXP)), ¥V 0<|(AU, AXP))|<e. A
necessary and sufficient condition for this is that 3 (U, X;?)), with
A

U'€[Uq, Uqyl, such that (U, X)) <((U;=AU, X2+ AXD)).
With this rather weak assumption the rest of the argument paral-
lels that for Approach I and leads to

DYy A b Uy <Uy: (Assertion U(+)),
<<U17X1 >><(<U27X1 >)©{ Uy zorUzz (Assertion U(—)),

(4.17)

with the internal energy increasing or internal energy decreasing
condition applying to all adiabatic processes with the same values of
the deformation variables.

From (4.12), along aline X © = XOD in Z with either X = ((S,X P))
or X = ((U,XP)), dU = TdS. So S and U increase or decrease
together if T>0 and one increases while the other decreases if
T <0. In contrast to the assertion L Y derived from the Lieb and
Yngvason approach this ‘standard’ Carathéodory account allows
both S(+) and S(—) as possibilities arising from the application of
Cth—I (Buchdahl, 1966, p. 76). It follows that the types of sub-
systems satisfy:

(4.15)

[SA,SD]E,Y)(, X=1L U
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{5(+)/\{[U(+)/\T(+)]V[U(—)AT(—)}}}
Cth—IIl := v :
S(=) A{[UCH)AT(=)IVU(=)AT(+)]}

(4.18)

However, most authors (e.g. Buchdahl, 1966, p. 77) follow Lieb and
Yngvason in arguing for the truth of U(+), that is that all systems
are p-simple, in which case we have:

Cth—l4:= {U(+) A{[S(H)AT(+F)IV[S(=)AT(=)]}
(4.19)

It is clear that any one of LY, Cth—Ill and Cth—Ill+ implies Cth—I,
since there will be, in any neighbourhood .7"x of X &, points,
along the X T axis above or below X, inaccessible from X by an
adiabatic transformation. The curves corresponding to Fig. 2(a) and
(b) for S(—) are shown in Fig. 5 (a) and (b) with the four curves
combined in Fig. 6.

Fig. 3 could be taken to be a schematic representation of the case
S(—), where & := &(P) y (N with the p-simple subsystem on the
left having entropy decreasing upwards and T<0 and with the
reverse for the n-simple subsystem on the right. In this case the
dotted line X’; to X', corresponds to the second half of the curve in
Fig. 6.

The types of system allowed by Cth—Ill can be identified by
U(+)AS(=) for all choices of signs, but also by the sign of the tem-
perature and whether the entropy is a concave or convex function,
corresponding to C(+), the heat capacity at constant deformation
variables being respectively positive or negative. The equivalent
ways of denoting the four types of systems are presented in Table 1,
from which we see that we have a choice of pairs of signs to
designate the type of a system. In fact for later use it turns out that
the signs of T(+)AS(+) or exactly equivalently T(+)AC(+) (in that
order) are most useful and systems or subsystems are identified as
E[++] with respect to these signs. The parts of the curve in Fig. 6
are labelled in that way. We have considered in detail the cases E :
=EH[++JUE[—-+Jand E := E[ — — Ju E[ + — ], which can both
be represented by suitably interpreted versions of Fig. 3. The form
of Fig. 6 leads one to speculate on the possibility of a case E := E[ —
+]u E[ - — ], where the two subspaces both have T( — ), but with
S(+) and S(—) respectively. In fact a version of Fig. 3 reflected about
the line PQ, which now corresponds to C(X) = 0 is consistent with
that situation. The implications of all these subsystem divisions for
the possibility of adiabatic processes across the 1/T(X) =0 or
C(X) = 0 boundary are discussed in Sect. 2.6.

2.3.3. Summary of the properties of entropy
Comparing the two approaches to the establishment of the
entropy function S(X) in Sects. 2.3.1 and 2.3.2, we see that:

(i) Each establishes the scaling and additive properties of
entropy.

(ii) While the Lieb and Yngvason approach in Sect. 2.3.1 estab-
lishes that entropy is a non-decreasing function for all

Table 1
The four types of thermodynamic systems.
U(+) u(-)
C(+) T(+)AS(+) T(—)AS(+)
C(-) T(=)AS(-) T(+)AS(-)

adiabatic processes, the approach described in Sect. 2.3.2
establishes that it is either a non-decreasing function or a
non-increasing function.

Lieb and Yngvason use Axiom A—VII to show that entropy is a
concave function on E; specifically by applying S(+) to the special

case X; : = <(X1T,X D)),xz - ((XZT,XD>) of Axiom A—VII

AS(<X1T7XD>) +(1- )L)S((XZT,XD>)

<s((X7+ (1 - xS xP)). (4.20)
In fact (4.20) simply follows from S(+) and the homogeneity and
extensivity of entropy (Prestipino & Giaquinta, 2003). The sign of
temperature plays no part in the argument which equally well
establishes concavity for Fig. 2 (a) or Fig. 2 (b). In the case where
S(—) applies (4.20) is replaced by

AS((XT.XP)) + - ns( (x4, XP))

zS((AXlTJr(l fA)sz,xD)), (4.21)

and the corresponding convex graphs of entropy against X T are
shown in Fig. 5 (a) and (b).

As we have already indicated in Sect. 2.2, it is a usually implicit
assumption of thermodynamics that a process is possible between
any two states of E. In particular this applies to processes like B :=
(XT+AXT XP) - ((XT,XP))=:A or A—B between the
labelled points on the curves shown in Fig. 2 (a), (b) and 5 (a), (b). In
the first case concavity implies that

1

(000400 (000 X))

and in the second case convexity implies that

(001000 25(07) (007

From these inequalities the directions of the irrecoverable adiabatic

A A . .
processes A— B or B— A, as shown in the figures, are evident.

2.4. Thermal Equilibration and the Zeroth Law

In our discussion of thermodynamics to this point we have
been concerned with the properties of a single type of system in
the whole or in a subspace of E. In this and the following section
we consider interactions between systems, and most particularly
thermal interactions, where there is a flow of energy in the form
of heat between two systems. We define processes in which two
systems are joined to form a single system and in which a system
is split into two subsystems. Lieb and Yngvason (1999, p. 55)
formulated these notions in terms of two axioms, T—I and T—II
asserting the existence of the operations of thermal joining
and thermal splitting. We take a slightly different approach by
defining the nature of the two processes before exploring
whether or not they exist. Our more general approach is neces-
sitated by the fact that, as already indicated, we are considering
the four types of systems given by Cth—Ill and listed in Table 1
and for the moment we suppose that the two systems or
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subsystems involved in thermal splitting and joining are of the
same type.

Thermal joining involves first putting two systems in thermal
contact, meaning that energy can flow between them without
change in their deformation variables. Initially the combined sys-
tem is not necessarily in an equilibrium state; for this to come about
a flow of energy in the form of heat needs to take place. This is
called thermal equilibration.>° It is an adiabatic process and the
final result is a system in a state described by a combination of the
deformation variables of the two original systems and a thermal
variable which is the sum of the corresponding thermal variables.
Formally:

Given two systems Z 4 and & g with X 5 := (X §,X R))€Z 5 and
Xp:= (X%, XP)eEp the system Enp with

X pp = ((X/T\JrXT,XR,XE))eE A ¥V X 5 and X g is called the

A
thermal join of E 4 and E g. It existsif (X o, Xg) <X ap, V (X A, X B)
€ 5 x Egand some X 5 g€ E 4 g. Any adiabatic process (X o, X g)

Ax A is called a thermal joining with entropy satisfying

The thermal splitting of a system into two systems depends first on
some way of dividing the deformation variables into two subsets
which will be the deformation variables of the resulting two sys-
tems. The obvious but not necessarily only way of identifying the
members of the two subsets is if the system is a result of thermal
joining. We shall assume that is true; in which case the process is
essentially a reversal of thermal joining. Formally:

For the system & 5 g with X ap := ((XKB,XR,X E)) €E pp, an
adiabatic process X ap i(X A XB)EBEAx Ep, where ((5(;7
XR)EB A (Xp.XD)€Ep and Xp+Xp=X]; is a thermal

A
splitting of E 5 p iff X pp > <(X a,XB). Then

Sas((XEa X XD)) - Sa((KAX2)) 55 (1] X))

whether S(+) or S(—) applies. (5.2)

Thermal joining and splitting can now be used to define thermal
equilibrium. Thus:
Given two systems E » and E g, if their thermal join E 4 g exists

and there is a thermal joining process (X a,X ) Ax ap and a
thermal splitting process X ag ~>(X a. X g) such that X T = X} and
XI= 5(; then E g and E g are in thermal equilibrium in states X 5

T
and X g, respectively, denoted by X 5 > <X .

36 1t effectively invokes the minus first law of thermodynamics of Brown and
Uffink (2001). They argue that none of the laws of thermodynamics actually as-
serts that a system not in equilibrium attains an equilibrium state and that it does
so must constitute an addition law.

The axioms T—I and T—II of Lieb and Yngvason simply assert
the existence of a thermal join of two systems and of at least one
thermal spitting of the resultingly joined system. They are, of
course, referring to the splitting and joining of E[++] systems,
but there is no reason not to extend the assertion to all the other
three cases where both systems are of the same type. We thus
have a criterion for pairs of systems of each of these four
types being in equilibrium. Fundamental to this is (Buchdahl,
1966, p. 29)°”:

The Zeroth Law of Thermodynamics: The thermal equilib-

T
rium relationship > < is transitive.

if S(+ ) applies,

(5.1)

if S(— ) applies.

Suppose that the systems E 5 and E g respectively in the states
(XT—AXT XDy and (AXT,XD)) are in thermal equilibrium.
This means that they can be thermally joined and then thermally
split (however many times we like) without changing their states.
For this to happen equalities must apply in the thermal joining
equation (5.1); meaning that equilibrium is given when AXT
maximises in the case of S(+) systems and minimises in the case of
S(—) systems>®

sAB<(xT, XR,XD;AXT)) = 5A<(XT ~AXT xg))

+sB((AxT,xg>) &3

at fixed X T, X ® and X 2. From (2.1) this extremum condition is

TA<<XT7AXT,XR>):TB(<AXT,XE)>. (5.4)

On the other hand if equality of temperature is taken as the crite-
rion for thermal equilibrium, then, from (4.22) and (4.23), E » in

state (X A,X ®)) and Z  in state ((X§,X D)) are in thermal equi-
librium if

37 Lieb and Yngvason assert the zeroth law as their Axiom T-IlI prior to the
establishment of the equal temperatures condition (5.4). As pointed out by Hilbert
et al. (2014), the transitivity of the zeroth law can be captured only if the systems in
the description of thermal equilibrium are understood both in an actual and po-
tential sense. Thus we may describe the situation ‘if two systems are thermally
joined’ or ‘if two systems were to be thermally joined'.

38 This result is proved more formally, for U(+)AS(+) systems, by Lieb and
Yngvason (1999, p. 57), before their introduction of temperature.
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A((XX—AXT,XR)) +sB(<xg+AxT.,x[B’)) <

S
a0~ AXTE)) - Saf (x4 A1) =

which is equivalent to the extremum condition (5.3). At the end of a
process of thermal equilibration E 4 and E g are at the same tem-
perature, or equivalently pairs of systems of the same type are in
thermal equilibrium if they are at the same temperature.

We now consider the possibility of two systems of different
types being in equilibrium. Before confining their attention to
E[++] systems Lieb and Yngvason (1999, p.56) argued that a
E[++] system and a E[—+] system could not be in thermal equi-
librium and we can see that is indeed the case. Since, although the
entropy argument contained in (5.3) and (5.4) applies, the two
systems can never have equal temperatures one being negative and
the other positive. The same argument would apply to a pair con-
sisting of a E[+—] system and a E[——] system. It is clear that the
entropy argument breaks down for S( + ), S(—) pairs of systems and
this absence of the possibility of equilibrium is reinforced in the
case where the temperatures have differences of signs. However, it
is of interest to note the case of system pairs E[ + + [, E[+—] and
E[ - — I, EL — + 1. There all the arguments concerning equilibra-
tion and extrema of entropy break down, but the two systems could
have the same temperature. Of course, a state of thermal contact in
this case would be highly unstable. Setting aside this speculation
we can adopt the language used by Lieb and Yngvason (1999, p. 47)
where.

A Thermodynamic World is a maximal set of thermody-
namic systems related by the possibility of thermal
equilibrium.

Then we see that thermodynamic systems or the subspaces of
systems fall into the four worlds as given in Table 1 and distin-
guished most conveniently by the pairs of signs of their tempera-
ture and heat capacity. Most accounts of thermodynamics restrict
attention to positive temperatures. The whole point of the current
work is, however, to explore the possibility of negative tempera-
tures. This question is distinct from the question of the sign of the
heat capacity with respect to constant deformation variables. Most
physical systems exhibit a positive heat capacity>® and, although in
Sect. 2.5 we include all types of systems, our discussions of statis-
tical mechanics in Parts II and III concentrates solely on Z[++] and
E[—+] systems or subsystems.

39 There are some systems for which the heat capacity is negative (Lynden-Bell,
1999). These are inhomogeneous systems, including gravitating objects like as
stars and galaxies. According to the virial theorem, for a self-gravitating body like a
star or an interstellar gas cloud, the average potential energy U pg and the average
kinetic energy U kg are locked together in the relationU pg = — 2U gg. The total
energy U = Upg + U g therefore obeysU = — U gg. If the system loses energy by,
for example, radiating energy into space, then U gg increases. Given that the tem-
perature is defined by U g the system can be said to have a negative heat capacity.

))+Se((x5.X8)). v AXT, if S(+) applies,
>)+SB<<X§,XBD)), v AX T if S(—) applies,

(5.5)

2.5. Comparing Versions of the Second Law

It is standard in the literature (e.g. Pippard, 1961, pp. 29,30) to
present three versions of the second law, that due to Carathéodory,
the first and second versions of which, denoted as Cth—I and
Cth—Il, we gave in Sect. 2.2, and those due to Kelvin and Planck, and
Clausius. In its modern expression (Buchdahl, 1966, p. 89) the
Kelvin—Planck version of the second law takes the form*’:

K— P: It is impossible to construct an engine which, oper-
ating in a cycle, will produce no effect other than the
extraction of heat from a reservoir and the performance of
an equivalent of work.

In its modern expression (Buchdahl, 1966) the Clausius version of
the second law takes the form*':

Cl: It is impossible to construct a device which, operating in
a cycle, will produce no effect other than the transfer of heat
from a cooler to a hotter body.

At this point, and in view of later discussion, it is worth pausing to
explore what is mean by a ‘reservoir’. In fact in the literature (Emch
& Liu, 2002, p. 338; Huang, 1963, p. 5) the terms ‘heat bath’,
‘reservoir’ and ‘heat reservoir’ are used as synonyms and taken to
mean “a system so large that the gain or loss of any finite amount of
heat does not change its temperature” (Huang, 1963) or “systems so
large that their properties cannot be observably affected by letting
much smaller systems be brought in contact with them” (Emch &
Liu, 2002). However, as observed by Lavis (2018), the ‘largeness’
which appears here is, from a theoretical point of view, not
essential*> What is required is that energy in the form of heat can
be drawn from the system without changing it temperature. And this
can be achieved by:

An isothermal reservoir E g, which is “a simple system whose
temperature T g remains constant by virtue of its entropy being a

linear function of its thermal variable X { and such that, in any

4% The original wording of Kelvin (Thomson, 1882, p.179) is that: "It is impossible,
by means of inanimate material agency, to derive mechanical effect from any
portion of matter by cooling it below the temperature of the coldest of the sur-
rounding objects.” Planck (1903) considered a number of versions of the second
law. The most apposite in the present context is in his Sect. 116: “It is impossible to
construct an engine which will work in a complete cycle, and produce no effect
except the raising of a weight and the cooling of a heat-reservoir.” Another, from his
Sect. 133 is quoted in a footnote on page 28.

4 The wording given by Clausius (1865) is that: “Heat can never pass from a
colder to a warmer body without some other change, connected therewith,
occurring at the same time.”

42 Except in so far as it avoids an upper bound on the heat that can be drawn from
the reservoir (see Sect. 3.5.1).
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process, its deformation variable X g also remains constant” (Lavis,
2018).

The implication of this is that the deformation variable X ¥ can
effectively be ignored. The sole variable determining the state of

the system is the thermal variable X E, but the temperature T g
enters, not as a variable but as a parameter intrinsic to the definition
of B g. Thus for an isothermal reservoir E g we modify our previous

notation by designating its state and nature by ((X ﬁ; TRr)). The only
changes in internal energy of the reservoir are the result of a flow of
heat; (4.12) in this case simply relates S(X) and U(X), becoming for a
process X g —~ X'y

TIS(XXR) - S(X'g)] =UXRr) - UXR) =Q, (6.1)

where Q is the heat that flows from the reservoir.

An important role played by isothermal reservoirs is to effect an
isothermal process XLX ina system Z. That is to say, a process
where T(X) = T(X'). Suppose that Z in state X := ((XT,X P)) and & »
in state X g := ((X k; Tr)) are thermally joined to form the system
Z g Which equilibrates into state X g := ((X T+ xEXPT R) ).The
joined system performs an adiabatic process in which X ? — X D" and
work W := WA (X ¢ g, X' ) is performed on the environment. The
system is then split leaving Z in state X' := (X T,X ")) and E in
state X'p := ((X T/;TR)). Given that the work W must have been
performed by E, the changes in internal energy for E g and E are
APU=xT - xT=-Q=TrAPs, AU:=XT _xT
=Q-W,

(6.2)

where A®S .= S(X'g) — S(X r) and Q is the heat which flows from
) R tO E.

There are many discussions in the literature concerning the
equivalence (or otherwise) of K-P, Cl and Cth—I. In this section we
shall restrict attention to a more limited task; to determine
whether K-P and Cl can be derived in the four cases given by Cth—III
in (4.18). To this end we consider a cycle of processes between four
points X o, X g, X ¢, X p, €E, with

T(X a) =T(Xp),
=5(Xn)

S(XB) =5Xc), TXc)=T(Xp), S(Xp)

(6.3)

If E is of a single thermodynamic type, it follows from (4.16) that

adiabatic processes X g Ax cand X Dix A are possible and adia-
batically recoverable and the cycle is completed by isothermal

processes XA—I>X g and X C—I>X p effected by thermally coupling
the system to isothermal reservoirs E gy and E g, both of the same
thermodynamic type as E, and performing on the combined sys-
tems adiabatic processes which are not necessarily recoverable.
(Although, of course, the isothermal processes for E are recover-
able.) We also include the possibility that the two reservoirs are of
different thermodynamic types, specifically that they have different
temperature signs but with the same direction of entropy flow in an
adiabatic process. For such a cycle to be possible and for the adia-

batic processes Xgé’Xc and X DﬁXA to be, even in principle,
realizable & must be the union of subspaces of the types of the two
reservoirs as represented in Fig. 3. As already indicated, the ques-
tion of adiabatic processes between two subspaces of a system with

opposite temperature signs, is considered in more depth in Sect.
2.6.

It is worth noting at this point that in many discussions of this
cycle (see e.g. Huang, 1963; Pippard, 1961, p. 33, p. 11) it is assumed
that the system undergoes equilibrium processes (suitably inter-
preted) along curves between the four points X o,X g,X ¢,X p. This
assumption is unnecessary for our analysis; the only thing defining
the geometry of the cycle is its four corners.

The temperatures of Epg; and Eg, are respectively
TR] = T(X A) = T(X B) and TRZ = T(X C) = T(X D) with

1
>_

1
) 6.4
Tro = Tri (64)

For all cycles, E g; and E g, with the smaller and larger values of
inverse temperature, are referred to respectively as the hot and
cold reservoirs, so that a reservoir at a negative temperature is always
hotter than a reservoir at a positive temperature, and:

I . -
I: For X y— X g, E is thermally joined to E ; at temperature T g;.
From (6.2) the changes in internal energy for E g; and E are

R R
AU =X g —Xfa=-Qas = TRIARS,

AU =Xg—XA=Qpp— W g, (6.5)

where A(igs := S(X rg) — S(X ra) and Q 4 p is the heat which flows
from E g to E.

II: For X g Ax o from (4.7), the change in internal energy is

ApcU=-WH(Xp,Xc)=-Wg. (6.6)

Ill: For X C—I>X p» & is thermally joined to E g, at temperature
T grp. From (6.2),

A(CR]))U = 7QCD = TRZA(CRI))Sv A CDU = QCD — WCD-

(6.7)
IV: For X p 3 X 5, from (4.7),
AppU=-WH(Xp,X ) = —Wphp. (6.8)
Since the internal energy of E returns to its initial state
Wr:=Wpag+Wpc+Wep+Wpa=Qas+Qcp- (6.9)

The total work performed on the environment is equal to the total
heat absorbed from the reservoirs.

As already indicated the most convenient designation for a
system is as one of T(+£)AS(z). If both the reservoirs & gy and E g,
and the system E have the same sign for S(+) then, for entropy,
there are two cases to consider:

(i) S(+) applies to all adiabatic processes and in particular, for
the processes I and III where E is thermally joined to the

reservoirs,
Qap R) (R) Qo
T = — < < = ——— .
Tri ANagS S AS < ANepS Ty’ (6.10)
where
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AS:=S(X5) ~ S(X ) = SX ¢) — SX p). (6.11)

(ii) S(—) applies to all adiabatic processes and in particular, for
the processes I and Il where E is thermally joined to the
reservoirs,

i ARS> As= ARS - -

QCD_
Tri

6.12
T (6.12)

And for temperature we consider three cases:
(a) T(+) applies to E gy, E g and E; and

T
Tri >Trp >0 = 0< -R2< 1.

6.13
Tor (6.13)

(b) T(—) applies to E gy, E g and E; and

= TL2>1.

0> TR1 > TRZ TR1

(6.14)

(c) T(+) applies to E g, and T(—) applies to E g;. This case,
which we denote by T(+), implies that
B = B[++]JuB[-+] or & :=E[+-JuE[--],
(6.15)

with

TR2>O>TR1 = @<0

6.16
Trr (6.16)

For the total work W there are three possibilities:

e When W >0 the cycle is acting as a heat engine; heat is
extracted from one or both of the reservoirs and work is per-
formed on the environment. The limiting cases are the ideal
engine, where all the heat is converted into work and none is
‘wasted’ by being drained into the other reservoir and the worst
engine, where all the heat is wasted and no work is done. K— P
refers to the situation where heat flows from either the hot
reservoir or the cold reservoir and the cycle is prevented from
being ideal by either inequality (6.10) or inequality (6.12).

e When Wt < 0 the cycle is acting as a heat pump (or refriger-
ator); work is performed on the system by pumping heat from
one reservoir to the other or into both reservoirs. The limiting
cases are the ideal pump, where all the heat passes from one
reservoir to the other without work being needed and the worst
pump, where work is done but no heat passes from one reser-
voir to the other. Cl refers to the situation where the heat is
pumped from the cold reservoir and is prevented from being
ideal by either inequality (6.10) or inequality (6.12).

e When W 1 = 0 the cycle can be regarded as acting both as a heat
engine and a heat pump; heat passes from one reservoir to the
other with no work being done on or by the environment. It is
therefore, as already indicated, the worst possible heat engine
and an ideal heat pump. As we shall see this symmetry rela-
tionship between the worst possible heat engine and the ideal
heat pump is an example of the wider symmetry between heat
engines and heat pumps.

Combining the two entropy cases (i) and (ii) with the three
temperature cases (a), (b) and (c) there are six possibilities for the
heat flow: three where the cycle operates as a heat engine:

HE1: Qag>0, Qag > —Qcp > 0: heat Q 5 is extracted from
the hot reservoir E gy and —Q ¢p is the waste energy supplied to
the cold reservoir E g,. The efficiency of the cycle is

_Wr_

1Q cpl
S S
K QaB

Qag’

(6.17)

where 0 < 5 < 1, with the ideal engine Q .p = 0 and worst engine
Qcp = —Qap corresponding to =1 and n = 0, respectively.
However, (6.10) and (6.12) impose the condition

Tra _|Qcp|
Tr1 = Qas
<1 forcases [T(+)vT(+£)]AS(+)and T(—)AS(-),
(6.18)
Tra2 _ [Qcpl
Tr1 = Qas
>0 forcases [T(+)VT(x)]AS(—)and T(—)A
S(+) (6.19)

From (6.14), if T( — ), the inequalities (6.18) are impossible to satisfy
and the inequalities (6.19) are always satisfied. On the other hand,
from (6.16), if T(=+), the inequalities (6.19) are impossible to satisfy
and the inequalities (6.18) are always satisfied. So cycles satisfying
T(—)AS(—) and T(+)AS(—) are not possible (NP) and for cycles
satisfying T(—)AS(+) and T(+)AS(+) the efficiency is uncon-
strained (UC) and can range over the whole interval [0, 1]. There
remain the two cases where T(+) is satisfied:
(1) From (6.13) and (6.18) when T(+ )AS(+ )

0<n<© ::1—E<1.

6.20
o (6.20)

The cycle is unconstrained from acting in a worst way but con-
strained from acting in an ideal way (CFI) as a heat engine. From

(6.3) the adiabatic processes X BAX c and X DAXA are recover-
able and if the inequalities in (6.10) become equalities, the adiabatic
processes where E is thermally joined to the reservoirs are also
recoverable. Then the whole cycle is recoverable and is called a
Carnot cycle®® with Carnot efficiency 7©, the maximum efficiency
at which the engine can perform.

(2) From (6.13) and (6.19) when T(+ )AS(—)

0<nl9<p<1. (6.21)

The cycle is unconstrained from acting in an ideal way but
constrained from acting in a worst way (CFW) as a heat engine.
The Carnot efficiency is now the least efficiency.

In passing we note that in the two completely unconstrained
cases T(—)AS(+) and T(x)AS(+), 79 <0 and 5© > 1,
respectively.

43 Sometimes (see, for example, Landsberg, 1961, Sect. 25) this cycle of processes is
called a ‘Carnot cycle’ irrespective of whether it is recoverable.
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Fig. 7. The regions for each of the cases of heat engines and pumps for T(+)
(Tr1>Tg2>0). Arrows point to the ‘ideal’ situation, where no heat is wasted in the
heat engine and no work is done driving the heat pump. The broken line, given by
(6.22), separates the region when S(+) applies on the left from that where S(—) applies
on the right.

HE2: Qp>0,0> Q ag > —Q cp: heat Q p is extracted from the
cold reservoir E g, and —Q ap is waste energy supplied to the hot
reservoir & g;.

HE3: Q o >0 and Q ¢p >0; heat is extracted from both reser-
voirs and work is performed on the environment.

And three cases where it acts as a heat pump:
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Fig. 8. The regions for each of the cases of heat engines and pumps for T(-)
(0> TRy >Tgy). Arrows point to the ‘ideal’ situation, where no heat is wasted in the
heat engine and no work is done driving the heat pump. The broken line, given by
(6.22), separates the region when S(+) applies on the right from that where S(-)
applies on the left.
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Fig. 9. The regions for each of the cases of heat engines and pumps for T(+)
(Trz >0>Tgq). Arrows point to the ‘ideal’ situation, where no heat is wasted in the
heat engine and no work is done driving the heat pump. The broken line, given by
(6.22), separates the region when S(+) applies on the left from that where S(—) applies
on the right.

HP1: Qap<0, 0<Qcp < — Qap; work is performed by the
environment extracting heat Q c.p from the cold reservoir E g,
and inputting heat —Q 4p into the hot reservoir E g;.

HP2: Qp<0, 0 <Qag < — Qcp; work is performed by the
environment extracting heat Q g from the hot reservoir E g4
and inputting heat —Q ¢p into the cold reservoir E g».

HP3: Q ag <0, and Q cp <0; work is performed by the environ-
ment and heat absorbed by both reservoirs.

The detailed analysis given above for the various cases of a heat
engine HE1 can be applied in a similar way to the other two cases of
a heat engine and to the three cases of a heat pump. The regions for
each of the cases of engines and pumps are shown in Figs. 7—9, for
T(+ ), T(-) and T(=), with, in each figure, the region of engines
separated from the region of pumps by the line W1 =0 (Q ag = —
Q ¢p) and regions for S(+) and S(—) separated by the broken line
given by

Qap _ —@7 that isn = 5(©. (6.22)
Tr1 Tro
Table 2

Cycle behaviour for all cases of heat engines and heat pumps. For HE3 and HP3 the
cycles are either possible or not possible (P or NP). ForHE1, HP1,HE2 and HP2 the
cycles are either not possible (NP) or unconstrained (UC) or constrained from ideal
behaviour (CFI) or worse behaviour (CFW). Cases where the appropriate form of the
second law is satisfied are shown in bold font. The irrelevant cases are shown in
slanting font.

HE1 HE2 HE3 HP1 HP2 HP3
T(+)AS(+) CF1 NP NP CFI uc P
T(=)AS(+) uc CFW P NP CFW NP
T(£)AS(+) uc NP P NP uc P
T(+)AS(~) CFW uc P CFW NP NP
T(=)AS(-) NP CFI NP uc CHl P
T(+)AS(+) NP uc P uc NP P
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The information in the figures is transcribed into Table 2. For HE3
and HP3, where heat is provided from both reservoirs and to both
reservoirs respectively, the cycle is either possible (P) or not
possible (NP) because conditions (6.4) and (6.10) or (6.12) cannot be
satisfied. All the other cases divide like HE1 into cases where the
cycles are not possible (NP) and, where possible into those which
are unconstrained (UC) by (6.10) or (6.12) and those that are. If a
constraint applies to a heat engine or pump it may be constrained
from operating in an ideal way (CFI) or in its worst way (CFW), but
not both. An engine or pump is prevented from acting in a ideal way
by conditions (6.10) or (6.12) being violated beyond a boundary
represented by the broken lines in Figs. 7 and 8. These correspond
to the best recoverable (Carnot) operation of the cycle. The sym-
metry inherent in the inequalities (6.10) and (6.12) are manifested
in Table 2 in that:

e The four 3 x 3 blocks map into each other in a clockwise or an
anticlockwise direction by interchanging the first two rows and
first two columns, with the interchanges CFl - CFW when a heat
pump interchanges with a heat engine.

e Changing the sign of temperatures interchanges hot and cold
reservoirs. It thus gives interchanges HE1«~ HE2 and HP1«~
HP2, and between the inequalities (6.10) and (6.12), mapping
between top and bottom blocks for both engines and pumps.

Table 2 and Figs. 7—9 can now be used to examine validity
conditions for K— P and Cl.

K— P makes no reference to the relative temperatures of the two
reservoirs. It simply asserts that a heat engine extracting heat
from one reservoir and doing work cannot perform in an ideal
way, that is to say without any other effect. It therefore coun-
tenances the case HE1, where heat is extracted from the hot
reservoir, and HE2, where heat is extracted from the cold
reservoir. The case of HE3 is interesting. No heat is being wasted
and this performance of the cycle could in the spirit of the law be
regarded as highly desirable (ideal) and therefore a violation of
K— P. However, on the obvious literal reading it satisfies the law
(if it is possible) because the heat extracted from the second
reservoir, whichever it is, is another ‘effect’, and this is how we
choose to treat it.

Cl is in some ways simpler. It asserts the impossibility of ideal
heat flow, that is to say without any work being expended, in
a specific direction, from a cold reservoir to a hot reservoir. It
applies therefore only to case HP1 and makes no reference
either way to cases HP2 and HP3 although it is interesting no
note that HP2 predicts the flow of heat from the hot to the
cold reservoir, without the expenditure of work, both when
the temperature of each is positive (which is otherwise
obvious) and both is negative, and when the hot reservoir is at
a negative temperature and the cold reservoir at a positive
temperature.

Reading from Table 2 the condition for the failure of either law is
UC or CFW. Both in their original formulations and in the modifi-
cations proposed by Ramsey (1956) and Landsberg (1977), the law
of increasing entropy S(+) is assumed. First restricting attention to
that case we see that Cl does not fail for any of the signs of the
temperatures and K— P fails if heat is emitted from only one
reservoir and that reservoir is at a negative temperature.

For Kelvin at the time of formulating his version of the second
law the version due to Clausius was well-known and he observes
that “It is easily shown that, although this [Clausius’ version of the
second law] and the Axiom I have used [his version of the second

law] are different in form, either is a consequence of the other”
(Thomson, 1882, p. 180).

On the other hand it is worth examining in some detail the
comments of Ehrenfest-Afanassjewa (1925, p. 938)*. She first
states her temperature Axiom (Axiom D) that:

“The absolute temperature has the same sign for all thermo-
dynamic states."

She then makes the following observations:

(i) “Without this condition one could carry out a Carnot cycle
that contains an isothermal process of positive absolute
temperature and an isothermal process of negative absolute
temperature. It would then be possible to retrieve heat from
both reservoirs, and [as a consequence] no heat would flow
from a higher temperature to a lower temperature in the
conversion of heat into work, as the principle of Clausius
requires.”

This remark, refers to the case T(+)AS(+), with heat flowing from

both reservoirs and being converted into work. This is, therefore,

the heat engine case HE3, which Ehrenfest-Afanassjewa correctly
takes as possible. However, it is not relevant to Cl which is con-
cerned solely with heat pumps, where work is converted into heat
and not the other way round, and for reasons we have described

above it is also not a violation of K— P.

(ii) “That the absolute temperature has an unalterable sign is
assumed to be obvious. From the above we now see how
essential this property is for Clausius' principle. By contrast,
Axiom D is not necessary for Thomson's [Kelvin's] principle,
which only says that one has to use more than one heat
reservoir to transform heat into work by dint of a cyclical
process.”

Contrary to this observation we have shown that Axiom D

(T(+)AS(+)) is necessary for K— P, since otherwise the cycle can

work in an ideal way emitting heat from a reservoir at a negative

temperature and turning it all into work, whether or not the second
reservoir is at a negative temperature.

(iii) “We see that the two principles do not say the same thing.”
We have shown this to be true, but not for the reasons advanced by
Ehrenfest-Afanassjewa.

(iv) “From the existence of the entropy alone neither Thomson's
nor Clausius' principle can be deduced.”

If the burden of this remark is that the signs of the temperatures of

the reservoirs are also needed then it is true for Thomson's principle

(K— P) but not for Clausius' principle (Cl) which is independent of

the signs of the temperatures .

In a similar vein Cooper (1967) speculates that “it is theoretically
conceivable that a perpetual machine of the second kind could be
universally impossible [that is to say K— P will always hold] but that
Clausius’ law does not hold for negative temperatures.” However,
our analysis and that of Ramsey (1956) and Landsberg (1977) has
shown that, when the condition S(+) applies in all adiabatic pro-
cesses, the Clausius law continues to be valid and the
Kelvin—Planck version fails. The modification of the K— P proposed
by Ramsey is*®:

44 1 am indebted to Roman Frigg for this English translation.

45 The German ‘Wirmezustand’ literally means ‘heat state’; the term denotes a
state characterised in terms of heat.

46 The ‘on’ in the last line would appear to be a slip of the pen since the point of a
heat engine is that the work is done by it on the environment.
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K— P/R: It is impossible to construct an engine which will
operate in a closed cycle and provide no effect other than (i)
the extraction of heat from a positive-temperature reservoir
with the performance of an equivalent amount of work, or
(ii) the rejection of heat into a negative-temperature reser-
voir with the corresponding work being done on the engine.

This identifies in (i) the impossible cases T(+ )AS(+ ), HE1, HE2
and HE3; and in (ii) the impossible case T(+)AS(+ ), HE2. It also
identifies in (i) T(+)AS(+ ), HE3 and in (ii) T(— )AS(+ ), HE3,
which although they are possible cycles, are, as indicated above,
excluded by the law since there is more that one effect.

The version due to Landsberg is:

K— P/L: Heat can be completely converted into work by a
heat engine which takes a medium through a cyclic process,
if and only if, that heat is withdrawn from a negative tem-
perature reservoir.

This identifies the three possible cases T(— )AS(+ ), HE1 and HE2,
and T(£)AS(+ ), HE1. It could also be understood, unlike K— P/R as
including the cases T(+)AS(+) and T(— )AS(+ ), HE3.

Landsberg, Tykodi, and Tremblay (1980) give a proof that these
two versions are equivalent, but as we have seen it is obvious from
our approach.

Of course, as we have already indicated, both these new version
of the Kelvin—Planck law assume S( + ), the law of non-decreasing
entropy, as do both the original Kelvin—Planck and Clausius ver-
sions. From Table 2, the modification to the latter when both S(+)
and S(—) are allowed is straightforward:

CI*: It is impossible to construct a device which, operating
in a cycle, will produce no effect other than transfer of heat
between two bodies of different temperatures if and only if
(i) the heat flow is from the cooler to the hotter body and
entropy is a non-decreasing quantity in all adiabatic pro-
cesses, or (ii) the heat flow is from the hotter to the cooler
body and entropy is a non-increasing quantity in all adia-
batic processes.

In the case of the Kelvin—Planck law in this most general situation it
is simplest to modify the Landsberg version:

K— P/L*: Heat can be completely converted into work by a
heat engine which takes a medium through a cyclic process
if and only if (i) that heat is withdrawn from a negative
temperature reservoir and entropy is a non-decreasing
quantity in all adiabatic processes, or (ii) that heat is with-
drawn from a positive temperature reservoir and entropy is
a non-increasing quantity in all adiabatic processes.

2.6. Processes between positive and negative temperatures

The T(+) cycle in Sect. 2.5 was predicated on a minimum
decomposition E[ + +JUE[ —+] or E[+-JUE[ —- —] of the
cycling system E and of there being a recoverable adiabatic process
between states in the two subspaces of the decomposition. In this

section we consider the possibilities for such processes. As we
made clear at the beginning of Sect. 2.2, it is assumed that there is
always some way to effect a process between two states of E and
this applies to the case of processes between states in different
subspaces of the decomposition. The important question is the
existence and properties of an adiabatic process of this kind.

This is on the one hand a practical question. According to the

A
first law, X <X’ if there exists a way, within the limitations dis-
cussed in Sect. 2.2, for work to be performed by the system on its

environment to implement a process X A X'. We have in Sect. 11,
presented the experimental evidence for a physical system being
caused to perform a process from a state of positive temperature to
one of negative temperature. The thermodynamic question of
whether the process is performed adiabatically and more specif-
ically whether it occurs between states of equal entropy is not one
addressed by the experimenters. However, in the case of the ex-
periments on LiF crystals by Pound (1951) and Ramsey and Pound
(1951), where the process from positive to negative temperature
is achieved by rapidly reversing nuclear spins using a magnetic field
it would seem plausible that the process is adiabatic.

On the other hand, the question has theoretical content. Does an
adiabatic process between different subspaces, and in particular
subspaces with different signs of the temperature, violate any
principle of thermodynamics? The statements U(+) and S(+) with a
particular choice of signs both apply to adiabatic processes within
one subspace. But it is clear that both cannot apply with the same
signs to processes between different subspaces. Thus an adiabatic
process between states in E[++] and E[—+1] is between subspaces
within which S(+) is satisfied but with U(+) and U(—) respectively.
This would seem to imply that the condition S(+) survives for
adiabatic processes between E[++] and E[ — + ]. However, we
begin with a rather weaker assertion, which covers the cases of the

recoverable adiabatic processes. X BAX c and X DAX a for the
T(+) cycle in Sect. 2.5.

For E[ + +Ju E[ — +] as represented in Fig. 3, and using the
same state labelling as in that figure and Fig. 6, we propose the
following:

Adiabatic Hypothesis: If X;E[++] and X,E[-+] and

A
S(Xl) = S(Xz) then X1 > <X2.
From which it is simple to show that:

Theorem 7.1. Given that both E[++] and E[—+] have a continuous
range of entropy [Si,Sy] and X'; €&[++] and X', €&[—+] then

, .y A,
S(X'1) < S(X'3) = X'{ <X ,.The same argument can, of course, be

applied to establish X', 2X”1 and, with decreasing rather than
increasing entropy, to establish adiabatic processes between
E[——Jand E[ + — ]. The reasoning is, however, inapplicable to the
possibility of adiabatic processes between two subspaces with one
where S(+) applies and one where S(—) applies. In the case illus-
trated in Fig. 6 the adiabatic assertion cannot be applied because
there is no overlap in the ranges of entropy. However, even if this
were not the case the most that could be assumed is the existence
of adiabatic processes between states of equal entropy and nothing
between states with unequal entropies. Although, as we showed in
Sect. 2.3.2, the division E] — +]u E[ — —] does not conflict with
any principles of thermodynamics, the existence and nature of
adiabatic processes between the subspaces is an open question.
From the experimental point of view evidence suggests the exis-
tence of systems with negative heat capacity (see the footnote on
page 13). But we are unaware of any evidence for systems having
subsystems with opposite signs for the heat capacity, let alone
adiabatic processes between states in these two subspaces.
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We now examine the validity of our Adiabatic Hypothesis
concentrating for simplicity on adiabatic processes between sub-
spaces E[++] and E[—+] since this is the situation for the T(+)
cycle in Sect. 2.5 which involves two adiabatically recoverable

processes X g Ax cand X p Ax A Where X ., Xg<eZE[—+] and X ¢,
X p<E[+ + ]. For the T(+) or T(—) cycle adiabatic recoverability
implies S(X g) = S(X ¢) and S(X p) = S(X 4) with each pair of points
lying on an adiabat. However, Ramsey (1956, p. 22) remarks that
“no means has yet been devised by which a Carnot cycle can be
operated between a positive and a negative temperature” and
although he does not detail the way that the cycle is performed the
generally accepted picture is made explicit by Pippard (1961, p. 52)
who asserts that “no isentropic [adiabatic] surfaces connect posi-
tive and negative temperatures, and therefore no reversible
[recoverable] cycle may be constructed.” These quotes from Ram-
sey and Pippard expose the crux of our discussion, since they, along
with many other authors (e.g. Huang, 1963; Tremblay, 1976; Tykodi,
1978) suppose that the cycle, traces out equilibrium isothermal and
adiabatic processes in E. If this were the case then the equilibrium

processes XBAXC and XD—A>XA would have to pass through
points where the temperature changed sign and as we have seen
such points have 8 : = 1/T = 0. For a system (like B, with finite m,
but not necessarily with only one deformation variable) which has
a finite number of energy levels, Tremblay (1976) has proved that
entropy has exactly one value on the surface § = 0 and that 3 >0
such that this value is greater than that on any hypersurfaces where
B € (—¢0)u(0,¢). For this class of models Tremblay correctly
infers that this substantiates the first part of the remark by Pippard
given above, that no adiabat can connect the two states with equal
entropy in the two subspaces. But this we have already shown in
Sect. 2.3.1, since it would follow in the case from Lieb and Yngva-
son's Thm. 3.3 that the decomposition E[ 4+ +Ju E[ — +] would be
impossible in that case. So the problem arises only if adiabats are

needed for the processes XBAXC and XDé»X A, and in the
description of the cycles in Sect. 2.5 we have shown that the only
states which have a role are X 5, X g, X ¢ and X p; not any kind of
equilibrium processes (however interpreted) between them. To
reemphasis the point; we know that some process X g—X ¢ is
possible, but can it be performed adiabatically? The most we can
say in answer to this question is (a) that the kind of sudden change
of state envisaged in the cycles in Sect. 2.5 and allowed by our
Adiabatic Hypothesis is more in tune with the experiments
described in Sect. 1.1 than is some continuous change of state. And
(b) that the argument advanced by the authors cited above based
on the non-existence of adiabats does not exclude the situation we
are describing here and does not provide an argument for excluding
adiabatic processes between states with a different temperature
sign, as in the cases represented by Fig. 9 and lines 3 and 6 of
Table 2.

3. Part Il Statistical mechanical considerations

As indicated in the title the main interest of this paper is in the
possibility that the temperature of a system can be either positive or
negative. In treating a cycle of processes in Sect. 2.5, we included the
case where a system undergoes an adiabatic process between states
with different signs for the temperature. In the statistical mechan-
ical discussion in this part we concentrate solely on the tempera-
tures of single states. We shall also restrict attention to systems
where S(+) applies that is the cases T(+)AS(+) and T(— )AS(+ );
meaning, from Table 1, that the heat capacity at constant deforma-
tion variables is positive. Entropy is a concave function of energy,
non-decreasing in adiabatic processes.

3.1. Systems and environments

Suppose that, as in Part I, the system is simple; that is to say
there is one thermal variable identified as the internal energy U. We
shall also, for simplicity, suppose that there is one deformation
variable X,*” when (4.12) becomes

TdS = dU — £ dX, (8.1)
or equivalently
TdS = dH + Xd¢, where H:=U —£&X, (8.2)

is the enthalpy.

In statistical mechanics the modelling of the system in different
physical conditions is by way of different distributions over the
underlying microstates mediated through the Hamiltonian. In each
case a thermodynamical potential (or free energy) is determined as
a function of the independent controllable variables with the
associate dependent variables and response functions being
determined as derivatives of the potential. A dependent extensive
variable is also given as the expectation value of its corresponding
statistical mechanical variable with respect to the appropriate
distribution. The expectation value of the Hamiltonian is the in-
ternal energy U for a mechanically isolated system and the enthalpy
H for a system in mechanical interaction with its environment. The
value of the Hamiltonian, which we denote by E and refer to as the
mechanical energy of the system, is taken to be bounded below by
Eqin and above by Emax. Apart from in the discussion of an
isothermal reservoir in Sect. 3.4.3 the existence of a lower bound is
not normally problematic, and the existence of an upper bound and
its role in the occurrence of negative temperatures has already been
explored in Sect. 1.

For the simple system considered here there are four environ-
ments according as the system is, on the one hand, either thermally
isolated (TI) or in thermal contact with its environment (TC) in the
form of an isothermal reservoir, and, on the other hand, mechani-
cally isolated (MI), so that X is fixed, or in mechanical contact with
its environment (MC), so that it is subject to manipulation of &.
Table 3 summarizes the relevant thermodynamic properties for
each of these four combinations. For a TI system temperature is
positive or negative according as entropy is a monotonically
increasing or decreasing function of U for a MI system, or H for a MC
system, as shown in Figs 2(a), 5(b) or 2(b), 5(a), respectively. Heat
capacity is positive or negative according as entropy is concave or
convex as a function of U or H as in Fig. 2(a), (b) or 5(a),(b) respec-
tively.*® It is, of course, the case that any of these behaviours could
be exhibited by a system over different ranges of U or H.

The statistical mechanical distributions for TI-MI and TC—MI
systems are called, respectively the microcanonical distribution
and canonical distribution and for a TC—MC system the Gibbs
distribution. There does not appear to be a generally accepted
name for the distribution of a TI-MC system and we shall call it the
micromechanical distribution.

3.2. Small, large and infinite systems: the equivalence of
distributions

For a TC system the temperature is a controllable variable whose
value T is determined by contact with the environment, which is an

47 This is in addition to the size parameter s introduced in Sect. 3.2. The gener-
alization to a larger set of deformation variables is straightforward.

48 Although, as we have already indicated, we shall restrict attention to the pos-
itive case.
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Table 3
Summary of thermodynamic environments. In each case a partial derivative with respect to one independent variable implies that the other is kept constant.
TI-MI TI-MC TC-MI TC-MC
Control Variables U, X H,¢ T.X Tt
Thermodynamic Potential Entropy Entropy Helmholtz Free Energy Gibbs Free Energy
S S A:=U-ST G:=H-ST
Differential Relationships 1_0s 1 _aS S— _ 0A s_ _ G
T U T oH -oaT T
13 oS X oS . 0A oG
== oy =z S = X=—-=
T ¢ T o 0X 3
Heat Capacity aT\ ! T\ ! 708 708
Cx at Constant X, or C; at Constant £ Cx = (@) G:= (@) Gi= TaT G = TaT

isothermal reservoir. The internal energy U is identified with the
expectation value of E, with the fluctuations of E/U satisfying (Lavis,
2015, p. 15) a fluctuation—response function relationship which,
for a TC—MI system, takes the form

\/@:

where as already indicated we have restricted attention to the case
where the heat capacity Cx > 0. Similar results apply for a TC—MC

\/<E2‘T,X> — [(EIT,X))? /G

(E|T,X) u’ ©.1)

system and also for fluctuations in X, the statistical mechanical
variable associated with X.

The size of a system, measured by a size parameter x, is an
important property in statistical mechanics. In principle any
extensive deformation variable can play this role, but the important
point is that once chosen it is treated as a parameter rather than a
variable. In both the case of the B,; model introduced in Sect. 3.3.2
and the perfect fluid of Appen. D, x : = N, the number of particles in
the system.*? From (9.1) it can be seen that the magnitude of the
fluctuations of E/U measured in terms of their standard deviation is
of order 1/+/x meaning that the fluctuations decrease with the size
of the system.”® Since fluctuations of uncontrolled extensive vari-
ables are characteristic of statistical mechanics and not present in
equilibrium thermodynamics, it is only in the thermodynamic limit
x— oo that statistical mechanics reduces to thermodynamics®' and
one might expect that in this limit results derived from different
distributions become equal. The question of the conditions under
which this happens has attracted much attention over the years
(see, for example, Ruelle, 1969; Martin-Lof, 1979; Georgii, 1995;
Touchette, 2011, 2015). The part of that work relevant to us is the
proof®? (Touchette, 2015) that if the microcanonical entropy den-
sity s, (E,X;n) : = Su(E,X;n)/x, using the surface formula (11.1), is a
concave function of E, then in the thermodynamic limit s, (E, X; 1) is

49 Although, in the latter case, the presentation could be reformulated so that the
volume V played that role.

50 This statement must be qualified in the case of the neighbourhood of a phase
transition. If such a transition occurs at a temperature T, then in the thermody-
namic limit,Cx o« (T — T¢)~%, where typically o has a small positive value, and for
large but finite systems this singular behaviour is approached in the form of steep
maxima inCy. This means that the closer one is to a phase transition the larger »
needs to be to suppress fluctuations, with the relationship between size and fluc-
tuations failing at the transition. Henceforth we shall, for the sake of simplicity,
suppose that our discussion is predicated on the assumption that we are not near
any phase transitions.

5! This usage of the term ‘reduction’ related to the thermodynamic limit is that
favoured by physicists. Philosophers of science tend to adopt the Nagelian account
in which the reverse is the case and thermodynamics reduces to statistical me-
chanics (Batterman, 2010, p. 160; Sklar, 1993, Chap. 9).

52 The proof is for a general N-particle classical system described by a Hamiltonian
which is the energy of the system.

equal to the entropy density derived from the canonical distribu-
tion.>> It follows from this that the other thermodynamic quantities
are equal. In particular that T, (E,X), the temperature derived from
sw(E,X;n) and given by (11.2), is equal to the canonical temperature
T. The concavity of s, (E, X; n) is just, from (11.4), the positivity of the
heat capacity, which has been assumed, and the equivalence of
distributions applies both to positive and negative temperatures T.
Similar results apply to the micromechanical and Gibbs distribution
pair.

Of course, experiments are performed on finite not infinite
systems and a distinction should be made between small systems
and large systems. Obviously these concepts are imprecise and
relative to the experimental situation or model calculation under
consideration. However, if for the sake of simplicity we take x : = N,
then for experimental situations one expects N to be of the order of
Avogadro's number, that is to say of the order of 1023, Such systems
will in statistical mechanics be regarded as ‘large’. Then relative
fluctuations are small, meaning that the differences in the results
derived using different pairs of distributions (TI-MI/TC—MI and
TI-MC/TC—MC) will also be small and the ratios U/N, S/N, X/N etc.
will have a negligible dependence on N, which disappears in the
thermodynamic limit N— co. In particular the limit of Epax/N is
finite, which is a stronger condition than that proposed in Sect. 1. In
the light of these results, both at and ‘near to’ the thermodynamic
limit, we argue that statistical mechanics approximately reduces to
thermodynamics for large systems, and that arguments in this
context based on small systems (where, for example, the difference
between N and N —1 is significant) should not be regarded a
decisive. This should, of course, not be taken as a blanket dismissal
of all uses of small systems in statistical mechanics. Real-space
renormalization group, numerical simulation and transfer matrix
methods all give quite good results for small systems. However, in
general, quality increases with size and we are arguing that relative
differences in results which decrease with size should not be
regarded as significant.

3.3. Continuous and discrete energy spectra

For simplicity we suppose that the lower bound for energy is
zero and consider the two cases where the Hamiltonian takes a
continuum of values, E€ [0, Emax] and where it takes a set of discrete
values EO = 0,E1,E2, ..., Emax-

3.3.1. A continuum of values

The states of this system are represented by points x<T’, the
phase space of the system, and the dynamics is given by a flow
which is a semigroup {¢;|t > 0} of automorphisms on I, parame-
terized by time t=R™. The Hamiltonian of the system .7 (x;X),

53 There may of course be a need to adjust the parameter .
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where X is the one extensive thermodynamic variable, is, for fixed
X, a constant of the motion, whose value E is the energy of the
system. Then all trajectories determined by the flow lie on the
energy hypersurface

S(E,X) := {x|.7 (x;X) = E}. (10.1)
Variation of X will alter the Hamiltonian and hence the flow. The
density of (energy) states is

w(E,X) == %JbDT(E — 7(%,X)) dT, (10.2)

where 6Dr(-) is the Dirac delta function, vy is a constant of the di-
mensions of d[°* and the integrated density of states is

E
Q(E,X) = [w(E’,X)dE’ = H@)(E — 7 (%,X)) dT, (10.3)
0 r

where O(+) is the Heaviside function. Assuming reasonably smooth
functions of E,>>

W(E.X) = % with »(E,X) 1= % Y(E.X) — ay(zféX)'
(10.4)

3.3.2. A set of discrete values: the By, model

As an exemplar of a discrete-valued energy system we take a
simple quantized model, used by Boltzmann (1877, p. 168), where N
non-interacting atoms each has m equally spaced energy levels 0, ¢,
2e¢,...,(m— 1)e, for some energy parameter >0 and for some pos-
itive integer m, with m = oo a possibility. This is a particular case of
the example used in the discussion in Sect. 1.1. The state of the sys-
tem is given by a point n := (ng,ny,ny, ..., Ny,_1) on the hyperplane
IIy := {njn-i = N}, wherei:=(1,1,...,1), (10.5)
in the space A, of m-dimensional non-negative integer-valued
vectors, where n; atoms are in energy level ie. The Hamiltonian of
the assembly is

' (n;e) :=en-j,wherej:=(0,1,....m—1) (10.6)
and the energy levels of the assembly are given by
E=¢X, whereX:=n-j=0,1,...Nm—1), (10.7)

specifically between the state X = 0, where all the atoms are in

their ground state and E = E,;;, = 0, and X = N(m — 1), where all
the atoms are in their most excited state and E = Emax = N(m — 1)e.

The degeneracy of level X is

PV ()A() — Z I'IN+1)

o ) (10.8)
my [Lizo T(mi + 1)

54 In the case of a fluid of N particles in a three-dimensional box the usual choice
isy : = (N + 1)h3N, where h is Planck's constant.

55 We note thatQ(E, X),w(E,X) and »(E, X) are respectively dimensionless and of
dimensions ]~ andJ 2.

with the sum over distributions lying on ITy and satisfying X = n-j.
W 'm ()?), which is defined only for integer values of)A( in the domain [0,
Nm-— 1)), satisfies 7 m(X)= Zm(Nim—1)—-X) with
7 'm(0) = 7 m(N(m — 1)) =1 and has a single maximum when m
isodd at X = %N(m — 1) and two equal maxima when m is even at
X =1INm-1£1)%¢

The density of energy states is the number of energy states per
unit of ¢, that is

wm(E;e) = % 7 'm(E/e), (10.9)
with the summed density of states
E/e E/e
Qu(Ee) :==e> wm(ke;e) =>  #'m(k) = Z'm(E/e). (10.10)
k=0 k=0

For this discrete-energy system differentiation must be replaced by
a finite-difference, and since the smallest incremental difference is
¢, for any F(E;¢),

OF(E;e)_F(E;e) —F(E —¢;¢)

9E = - . (10.11)
In particular, from (10.10),
. E/e E/e—1
% = wm(ke;e) = > wm(ke;e) = wm(Ere).  (10.12)
k=0 k=0

3.4. Athermally isolated (TI) system: the choice of entropy function

3.4.1. The continuous-energy TI—MI system: the microcanonical
distribution

Hilbert et al. (2014) have surveyed a range of possibilities; we
shall concentrate on the two main contenders.

(i) The surface entropy

Sw(E,X;n) := Innw(E, X)), (11.1)
where 7 is a constant which has the dimensions of energy; thus
rendering the argument of the logarithm dimensionless. S,,(E, X; 1)
is the most commonly used form for the microcanonical entropy
(Huang, 1963, Sect. 6.2),°” giving, from Table 3, for the surface
temperature and surface expression for the other intensive
variable,

(11.2)

1
To(Ex) = (PEE) e

56 We pause to note that the cases m = 2,3 are mathematically equivalent to
assemblies of N non-interacting spin—% and spin-1 particles in a magnetic field. (If
the ordering of the spin states {—1,+1} and{ — 1,0, + 1}, respectively, is the same
as the ordering of states {0,1,...,m — 1} in this model then the magnetic field is
negative.) The former is the example considered by Vilar and Rubi (2014), Campisi
(2015, Sect. D) and Abrahm and Penrose (2017), and we shall present results for the
latter.

57 Although it should be noted that in the derivation of the equipartition function
in his Sect. 6.4 he passes over the problem described in Sect. 4.1, below, by using the
bulk entropy (11.5).



D.A. Lavis / Studies in History and Philosophy of Modern Physics 67 (2019) 26—63 47

B 3S,(EX;m) 1 0w(E,X)
.fw(E,X)_Tw(E,X) ax _V(E,X) X (11.3)
and

(S EXm\ | (AT, EX) !
@@Mﬁm@&ﬁ(—ﬁf—j :GTF%
(1w EXOMEX)
- v(E,X)*
(11.4)

for the surface heat capacity. Khinchin (1949, p. 37) refers to
w(E,X) as the structure function and asserts that it is mono-
tonically increasing in the domain [0, o), for E€ [0, o). If this were
the case the surface temperature would always be positive. Khin-
chin's English translator comments that “this appears as an addi-
tional assumption”, and indeed, as we see in the case of the
discrete-energy system with a finite number of energy levels, it is
not necessarily true.

(ii) The integrated density of states Q(E,X) is, of course, a
monotonically increasing functions of E and Gibbs (1902,
Chap. XIV) proposed the use of the bulk entropy

Sa(E,X) := In[Q(E, X)], (11.5)

for a microcanonically distributed system. The bulk equivalents of
(11.2)—(11.4) are

_ (8Sq(E,X)\ ' Q(E,X)
TQ(E,X)f( QaE ) ~ G EX) (11.6)

B 3So(E.X) 1 0Q(E,X)
fa(E.X) = To(E.X) =g “oEX X (11.7)

L (PSEX)\ | (OTq(E X)\ !

%@M%%@MZQ7@—> - (")

({ QEXWEX) ’1.

[ (E, X))
(11.8)

The bulk temperature is always positive with

_ To(E.X)
Ty(E,X) = 1 (CEX) T (11.9)

showing that the surface temperature is negative whenever
Co(E, X)€[0,1).

We also note in passing an intermediate case between the sur-
face and bulk entropies, chosen by some authors (Tolman, 1938,
Sect. 22; ter Haar, 1961, p. 106) as a definition of the microcanonical
distribution. This is the shell entropy’® where

Ssu(E, X: AE) = In[Q(E,X) — Q(E — AE,.X)], 0 <AE.

(11.10)

58 Hilbert et al. (2014) calls this the ‘modified Boltzmann entropy’.

It is not difficult to show that this, in the limit A\AE—E, yields the
bulk quantities and, for AE<E gives
S sn(E, X; AE) =S, (E,X; AE), (11.11)
TSH(E7X§ AE):T&)(va)v gSH(va AE):Ew(va)’ (-l-l 12)
CSH(E’X; AE):CQ)(E’X) '

To first order in AE the shell entropy coincides with the surface
entropy when 1 : = AE, which is the value chosen by some authors
(Huang, 1963, Sect. 7.2; Pathria, 1972, Sect. 2.3).

If the Hamiltonian is the only non-trivial®® global constant of
motion, the energy hypersurface =(E, X) is an ergodic subspace of
the system, meaning that it is indecomposable with respect to the
flow. Then the appropriate statistical mechanical distribution for
independent variables E and X is given by the microcanonical
probability density function®®

_ME - 7 (%))

p(X|E, X) := Yo(E.X) (11.13)
In a trivial sense
U=E = (EIE,X) = (7 (x,X)|E,X), (11.14)

where (---|E, X) is calculated using the probability density function
(11.13). Less trivially, from (C.2), (C.3), (10.3) and (11.2)—(11.9),

0.7 (%:X) 1 QEX) 8Sq(E, X)
< X ’E’X>*_w(E,X) ox ~ TaEX) =58

= ¢a(E.X),
(11.15)

<xja,z/(x;X)‘E7X> _ 5Kr(i —j) Q(E, X) — #4(E,X)

Yw(E, X) 0x;

ox; w(E, X)
= 6""(i — )T(E,X) — #;(E.X), (11.16)
where x; and x; are any components of ¥, and
[xOE — 7 (%, X
#i(E,X) = L [ 0 ®X)] ar. (11.17)
r

3.4.2. The discrete-energy TI—MC system: the micromechanical
distribution

As we have noted in the footnote on page 21, the ®B;; model is
mathematically equivalent to an array of independent spins, where
the appropriate TI distribution is micromechanical with control-
lable variables E, the energy, and a magnetic field. In the B;; model
e is an internal energy parameter not a variable, so E is the only
controllable variable®! with, from (8.2), the enthalpy H = U = E and

59 Of course, any constant, or indeed any function of the independent variables,
which is not a function of the microscopic phase state is a ‘trivial’ global constant of
motion.

50 It can also be argued on the basis of the principle of insufficient reason that this is
the appropriate distribution when the Hamiltonian is the only known non-trivial
global constant of motion.

61 The motivation for choosing the micromechanical and Gibbs distributions in
this case, rather than the microcanonical and canonical distributions is the need to
relate 9B, to the corresponding spin model in Sect. 4.4.
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X=X=HJe. (11.18)

The micromechanical probability function is

P(nH;e) e — | (11.19)
T W m(He) '

where the degeneracy 7 'm(H/e) is given by (10.8) and the micro-
mechanical surface, bulk and shell entropies are

Sw(H;e,m) := Innwm(H; €)], (11.20)
So(H;e) == In[Qm(H; €)], (11.21)
Ssu(Hye, AH) := In[Qun(H; ) — Qm(H — AH;€)] (11.22)

Here the energy states have an incremental spacing ¢, making this
analogous to AE in the continuous-energy case. So the natural
choice is to set  : = ¢ = : /\H. Another way to look at the question
is to refer back to Boltzmann's intention with respect to the argu-
ment of the logarithm. It is supposed (Boltzmann, 1877, p. 169) to be
the number of microscopic configurations compatible with a
particular macrostate, which in this case is 7, (H/#)%%; leading
again to 7 : = e. Substituting from (10.12) into (11.22),
Ssu(H;e,e) =S, (H;e,e) =In[ 7 'm(H/e)], (11.23)
exactly, rather than, as in (11.11), simply for small AE. It follows
from (10.9) and (10.10) that each of the entropies (11.20)—(11.22) is
a function of H through X = H/e with

1 oS 105(X)
For the case of three energy levels (the 83 model) the surface and
bulk entropies are shown in Fig. 10 and the surface and bulk tem-
peratures in Fig. 11. The significance of these results is discussed in
Sect. 3.6.

For any N> 1 there is a qualitative change in behaviour from
systems with large m to ones with m — oo, so that Epax — oo. It is not
difficult to show that, in this limit,

7w (H/e) = 7 hye(H/e) = %

(11.25)
Of course, as for the finite m case, X = H/e¢ is an integer variable.
However, use of gamma functions, avoids, by analytical continua-
tion into real values, the need for numerical differentiation with,
from (11.23) and (11.24),

T,(Hie) 0X 7 X) oX =WX+N)-¥X+1),

(11.26)

where W(-) is the digamma function. The surface and bulk en-
tropies for the infinite case (the B, model) are shown in Fig. 12 and
the surface and bulk temperatures in Fig. 13.

52 The objections advanced by Brush (1976, p. 608) to this combinatorial defini-

tion: (i) that the states of the microsystems form a continuum, (ii) that the tem-
perature dependence of the model cannot be introduced in this way, are both
invalid in the present case since: (i) the microstates are discrete, (ii) the depen-
dence in this Tl system is on H = E not T, and that enters throughX = H/e.

100

\ \
100 /e 200

Fig. 10. The surface and bulk entropies for the 83 model with N = 100.

|
Hje 200

Fig. 11. The surface and bulk inverse temperatures for the 83 model with N = 100.
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200 -~

\S

150

100

| | |
100 HJe 200

Fig. 12. The surface and bulk entropies for the 8., model with N = 100.

As we saw in Sect. 1.1, models with no energy upper bound are
still capable of yielding negative surface temperatures. A simple
example of this was provided by Matty et al. (2017, Sect. V.5), where
w(E) : = exp( — vE), withv> 0. In similar way 8B, can be modified by
assigning a degeneracy exp(—iv) to the energy levels ie, for i =
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\ \ \
100 Hfe 200

Fig. 13. The surface and bulk inverse temperatures for the 8., model with N = 100.

0,1,2,.... Results for this model are shown in Figs. 14 and 15. The
value of v was chosen to ensure that S,,(H/e) = 0, when H = 200¢,
affording comparison with Figs. 10 and 11.

3.4.3. An isothermal reservoir
This is defined in Sect. 2.5 as a simple system for which:

(a) The deformation variables X and & are either absent or kept
constant, thus removing the distinction between the
microcanonical and micromechanical distributions.

(b) The entropy is a linear function of E, meaning that the ther-
modynamic temperature T has a designated constant value.

Here both E and T can be regarded as independent variables and we
use the notation of Sect. 2.5 to specify the state of the reservoir by
((E;T)). For general systems we are interested in the choice be-
tween surface and bulk entropies and temperatures. We now
investigate how this plays out in the case of an isothermal reservoir.
More precisely, whether T is equal to the microcanonical surface
temperature or bulk temperature when the reservoir is thermally
isolated. For the sake of this discussion, let E € [E,y;i,, Emax], SO that
the zero lower bound in the integral in (10.3) is replaced by E,
with Q(Enin; T) = 0.

First suppose that T,,(E; T) =T.Then «'(E;T) = w(E;T)/T, giving,
from (10.3), (10.4), (11.1), (11.2), (11.5) and (11.6) (and using suitable
subscripts).

Qu(E;T) = woT{exp(E/T) — exp(Emin/T) },
Vo (E;T) = woexp(E/T)/T,

Su(E;T,m) = In(nwg) + E/T,
To(E;T) = T{1 — exp([Emin — EI/T)},

wo(E:T) = woexp(E/T),
Xo(E: T) = woexp(E/T) /T2,
Sa(E: T) = In(wo) + In[T{exp(E/T) — exp(Emin/T) } .

SSZ

o
T

25

| |
100 He 200

Fig. 14. The surface and bulk entropies for the modified 8., model with v = 0.9341794
and N = 100.

100 H/e 200

e/T.

Fig. 15. The surface and bulk inverse temperatures for the modified 8, model with
v=0.9341794 and N = 100.

(11.27)
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for some constant wy.

On the other hand, if To(E;T) = T, then Q'(E;T) = Q(E;T)/T,
giving
Qq(E;T)=Qoexp(E/T),  wq(E;T)=Qexp(E/T)/T,
vo(E;T) = Qoexp(E/T) /T2, xq(E;T) =Qoexp(E/T) /T?,
So(E;T)=In(Qo) +E/T,  Su(E;T.n)=In(nQ/T)+E/T,
T(ET)=T,

(11.28)

for some constant Q.

Qq(E; T)satisfies the boundary condition Qq(Epn;T) =0 only
when Ei; = — and T>0; then with Qg := wgT, the sets of
equations (11.27) and (11.28) become identical. They are also in
asymptotic agreement in the limit E— oo, when T > 0, Eqmax = 0. It
can reasonably be argued that a reservoir which is truly large with
respect to any finite system requires that E €[ — o, ]. However, the
point of our definition of an isothermal reservoir is to avoid the
need for largeness and in any event the restriction to positive
temperatures is more serious in the light of our use of a reservoir at
a negative temperature in Sect. 2.5.

We conclude that the thermodynamic temperature T of the
reservoir can be identified with the microcanonical temperature for
the surface entropy, but for the bulk entropy, only for E,;;;, = —0 and
positive temperatures, or asymptotically for large energies and
positive temperatures. Which returns us to the traditional idea of a
heat reservoir, which, as described in Sect. 2.5, is taken to be so large
that its state is unaffected by flows of energy into and out of a system
with which it is in thermal contact. In all the following discussion,
since we are concerned to accommodate negative temperatures, we
chose E;, to be finite, in fact, without loss of generality E,, : = O,
and implicitly assume that Emax := co when an isothermal reservoir
is treated from the perspective of the bulk entropy.

3.5. Systems in thermal contact (TC) with their environment

3.5.1. The continuous-energy TC-MI case: the canonical distribution

As indicated at the beginning of Part I, classical thermodynamics
is concerned with systems in equilibrium, both a single system &,
scaled versions E(A) of & and Cartesian products E 5 x E g of such
systems, which can simply be pictured as the two systems E 4 and
E p taken together, but with no interaction between them, so that, if
Xpa€B and XgeE g, (X p,Xg)EE 4 x Ep. There is also the need
to consider the situation when two systems E 4 and E g are brought
into thermal contact.%? Given that they are otherwise isolated, an
adiabatic process of thermal equilibration will, as described in Sect.
2.4, occur (unless the systems are already at equilibrium) and the
extremum condition imposed on (5.3) leads to the equal temper-
atures condition (5.4) and the entropy conditions (5.5), for the cases
where S(+) and S(—) respectively apply. It should be emphasised
that thermal equilibrium in this context is for the individual sys-
tems, that is to say for E , and E g when they are individually
isolated. Thus it applies after splitting following a joining, when
equilibration may or may not have been necessary.

Approaching the problem from a statistical mechanical stand-
point, suppose that & , and E g are thermally joined so that the
joined system E ag has total energy E 1. The energy E 5 of E 4 will
fluctuate in the range [0, E 1], with conditional probability density
function given from (C.6) by

63 As indicated in the footnote on page 12, there is a need to consider both actual
and potential contact.

WA(EA,XA)WB(ET—Ea X3)
E AlX 7)( ;E =
pA( A| A B T) W AB (ET,XAva)

=pp(ET—EalXB,XA;ET).

(12.1)

The expected value of the bulk temperature of E 4 is, from (11.7)
and (C.8), given by

Er
J' dE Qa(Ea,Xa)wp(ET—Ep,XB)
A wap (ET,XA,XB)

<TQA(EA7XA)XA»XB§ET> =

=Toas(ET,XA,XB)-

(12.2)
and, of course, by the same argument,
(Toa(E A X a)IX a: X B ET) = (Tae(E B, X B)IX B, X A ET)
= Toas(E1,X A, X B)- (12.3)

From (11.3) and (C.7)%* the corresponding expressions for the sur-
face quantities are

va(Ea,Xa)wB(ET—Ep,X3B)
w ag(ET,XA,XB)

Er
1
L XaXpEr)= |dE
<TwA(EA»XA) Ae T> J A

1
_T‘UAB(ET7XA’XB)7
(12.4)
<;‘XA-XB§ET> = <;‘XA7XB§ET>
Toa(Ea. XA)" ™ Tus(EB,XB)
_ 1
~ Tua(ET,X A, XB)
(12.5)

Now suppose that E g is an isothermal reservoir at temperature T
with its state and character defined, as in Sect. 3.4.3, by ((E;T));
X g is a constant which can be ignored. From (11.27), (11.28), (12.3)
and (12.5)

TuB(EB) = Tung(E1,Xa) =T (12.6)

for positive or negative T, and, asymptotically for large E, and

Top(Eg) = Toas(E1,Xa) =T, (12.7)
for positive T, with
nwo © A(E A, Xp)exp [(E1—Ea)/T]
EAT.XpEq) =
pPAEAIT,XasET) © A5 (E1.XA)
_wa(Ea Xa)exp(—Ea/T)
Z'(T,X p;ET) '
(12.8)

where

64 Assuming in this case thatw g(0+ ) = 0.
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Z'(T,X p;Ev) o= o a(ET,X a)exp(—E1/T)

(nwo)

[ u)A EAva exp( EA/T)dEA (129)
0

It has been assumed that the total system E 5y is isolated with fixed
total energy E T, which is the upper bound Epnax on the energy in the
form of heat provided by the heat bath/reservoir and available to
E . Dropping the subscript ‘A’, (12.8) is replaced by

o(E X)exp(~E/T)

E|IT,X;E =—Ft =7 12.10
PUEIT X Bmax) =7 (T X: B (1219
where

Emﬂ)(
Z (T, X; Emax) = J W(E, X)exp(—E/T)dE (12.11)

0

These are respectively the canonical probability density and
partition functions with respect to which

Emax

w(E,X)E exp( — E/T)dE
ZC(T7X§ Emax)

= (E|T,X; Emax) = g

20I0[Z (T, X; Emax) |

T = —T1In[Z (T, X; Emax) ]

oT
Ta{ _TlI][Z(:(’Tv)<7El'nax)}}7 (-12-12)
oT
establishing, from Table 3, the expression
A(T,X;Emax) := —T In[Z (T, X; Emax)] (12.13)

for the Helmholtz free energy. It is important to note that the
derivation of the canonical probability density function is predi-
cated on the form chosen for the microcanonical entropy. In the
case of the choice of the bulk entropy it is valid only for T >0 and
Emax = oo. In particular, from (12.4) and (12.6),

1 T p(EIT, X; Emax)
7= <Tw( 7. Emax> - J e lde (12.14)
0
and, from (12.2) and (12.7), for T >0 and Epax = oo,
T= <TQ(E,X)|T,X> = [TQ(E,X) p(E|T,X)dE (12.15)
0

For a phase function F(x; X) the canonical expectation is calculated
using

exp( — 7 (x:X)/T)
YZ (T, X; Emax)

Enmax

ﬁ(X|T7X. Emax) =

P(X|E,X) p(E|T,X; Emax)dE. (12.16)

0

And thus, from (11.15) (and again only for T>0 and Emax = o),

$c(TX) =

OA(T,X) o7 (x:X)
X\ oX

T,X> = J £q(E,X) p(E|T,X)dE.
0

(12.17)

In Sect. 4.5 we show that the relationships (11.15) and (12.17) for the
bulk intensive variable £ (E, X) hold in the thermodynamic limit for
the surface intensive variable &, (E, X).

3.5.2. The discrete-energy TC—MC case: the Gibbs distribution
For the B;; model, the controllable variable is now T. The fluc-

tuating quantity is the vector n, where since, from (10.7), X = n,j
and E = X, both X and E fluctuate with the enthalpy given by

H = (7 (m; 8))T; gy = (S)A(‘T; ey, (12.18)

where (---|T; ¢) is calculated using the Gibbs probability function
P(X[Te) = Zm (XQZ)EESSX/ ") (12.19)
and
N(m-1)
Zo(T:e) = Z P'm ()?)exp(—d?/T) (12.20)
X=0

is the Gibbs partition function. From (12.18)—(12.19),

H= T2aln[ G(T é)} =T ln[ZG(T; l:)] a{ Tln[z (T7 8)]}7

oT oT
(12.21)
thereby establishing, from Table 3, the expression
G(T;e) := —T In[Z 5(T; €)] (12.22)

for the Gibbs free energy.

3.6. Relating distributions

Comparisons between distributions provides an important
element in the discussion of the rival claims of the surface and
bulk entropies (Buonsante et al., 2016; Matty et al., 2017). In Sect.
3.2 we presented the evidence for the equivalence in the ther-
modynamic limit of the pairs of distributions microcanonical/ca-
nonical and micromechanical/Gibbs away from critical regions
and with positive heat capacities. We now examine the situation
for large finite systems in more detail for both surface and bulk
entropies.

3.6.1. The microcanonical and canonical distributions

In the microcanonical distribution the controllable variables
are the mechanical energy E and the deformation variable X with
the internal energy U := E. With given density of states w(E,X)
the surface and bulk entropies are calculated from (11.1) and
(11.5) and the surface and bulk temperatures T,(E,X) and
To(E,X) from (11.2) and (11.6). In the canonical distribution the
controllable variables are the temperature T and X and, again
given the density of states, the Helmholtz free energy can be
calculated from (12.11) and (12.13). Given that, for the reasons
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we present above, we expect the distributions to be approxi-
mately equivalent for large systems we have two possible
equivalences for temperature

To((EIT,X;Emax),X) =T and Tq(E|T,X; Emax),X) = T,
(13.1)

where, of course, in the latter case Emax = oo and possible validity is
restricted to the range T > 0. The results for the perfect fluid are
given in (D.14), where we see that the condition holds exactly for
the bulk temperature and in the thermodynamic limit, where the
size parameter N — oo, for the surface temperature. From (12.10),

Emax
E exp [{,(E;T,X;n)] dE
(E|T,X; Emax) = =2 :

_ (132)
Jo exp [{,(E;T,X;n)] dE

where

between the canonical temperature and the microcanonical
surface temperature in the thermodynamic limit. This leaves
open the question of the behaviour of the bulk temperature. For
this we adopt the procedure of Buonsante et al. (2016). We have
already noted the difficulty of developing the canonical distri-
bution using the bulk entropy in the case where the energy
domain has a finite upper bound. However, this can be set aside
in the present discussion since it is clear that w(E,X) and Q(E, X)
have the same domain of energy [0, Emax], Where Emax may or
may not be finite, and we are concerned only with comparing
the surface and bulk temperatures in the microcanonical dis-
tribution for E€|[0, Emax]- Since, as already indicated, S, (E,X;7) is
a concave non-negative function of E with S, (0,X;7n) = 0, there
are two possibilities:

(i) Sw(E,X;n) is an increasing function, and in consequence
T, (E,X)>0, V E€[0,Emax].

(ii) Sw(E,X;n) attains a maximum with T;l(E,X) = 0, for some
E €(0,Emax)-

From (10.3), and again applying Laplace's method, for E < Emax,
It follows that

Tw(E, X)exp[Sw(E, X; 1) 1/7,

if T;1(E,X)>0, V E'€[0,E],

Q(E, X) zjjexp [sw(s,x; n) ]dE’ Ll (E,x),/zwcxtl, (E,x)exp

if T, (E,X) =0, for some E€(0,E).

0

Co(E; T, X;m) := Su(E, X;m) — E/T.

Given that S, (E, X; n) is a concave non-negative function of E with
Sw(0,X;m) = 0, as in Fig. 2(a) and (b), {,(E;T,X;n) has a single
maximum at E = E*(T, X) given by

(an(E; T.X; n))* _ (E)Sw(E,X; n)>* 1 Tw(;*,X) =0

oF oF -

(13.3)
o [ SeEXim) if T,'(E,X)>0,
Sq(E,X) = {Sw (E}X% 11) if T;1(E,X) <0. (13.7)
And to summarize the results of this section
TL TL .
T,(E.X) = Ta(E.X) =T, if T>0,
(13.4) Tw(E,X) I T and Tu(E,X) = o, if T<O. (13.8)

Assuming that E* €0, Emax] it follows from Laplace's method ©°
that

(EIT,X;Emax) = E* = T,((E|T,X;Emax),X) = T, (13.5)
which is not an unexpected result since fluctuations around (E|T,
X;Emax) decrease with system size with the exact coincidence

55 The integral & ¢(E)expsy/(E)|dE, with ¢/ (E) <0, V E€[Ey, Ey), is
asymptotically equal to
—(Eq)exp[xy/(Eq )]/[“‘;W(El ) if \V:(E)<0‘ V E€[Ey, By,

$(E)exp[y (Ex)]/ vV (E2)]; if Y/(E)>0, V E|Er, B, in  the
S(E*)explsy(E*)] /277/))"\//” <E*)| if / (E*) = 0, for some E* & (E;, E,),

limit ¥— oo (Copson, 1967, Chap. 5). In the present context, where x is the size
parameter, this is the thermodynamic limit and asymptotic equality is denoted

byg'.

3.6.2. The micromechanical and Gibbs distributions
In the micromechanical distribution for the 9%,; model the
controllable variable is E, with the enthalpy H = E and in the Gibbs
distribution the controllable variable is T. The possibilities (13.1) to
test the equivalence of distributions are replaced by
To((E|T;e);e) =T and Tq((E|T;e);e) =T. (13.9)
The expectation value (E|T;¢) can now be calculated from (10.9),
(11.20) and (12.19), or, since the total energy is no longer con-
strained, it follows quite simply that
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i—0 _ Ne{exp(—e/T) — mexp(—me/T) + (m — 1)exp( — [m + l]e/T)}‘

m-] {1 —exp(—¢/T)}{1 - exp(—me/T)}

Ne'S i exp(—ic/T)
<E}T; e> = =

go exp(—ie/T)

In using this result to test (13.9) there is a technical problem to
overcome. This is because T, (E;e) and Tq(E;¢) are, in the micro-
mechanical distribution, defined only for values of E in the set {0, ¢,
2¢,...,N(m — 1)e} and the computation of (E|T;e), using (13.10),
with an arbitrary choice of T, will not necessarily produce a value in
this set. However, it is easy to see that the conditions

(E|T,(E;e);e) =E and (E|Tq(E;e);e) =E (13.11)
are equivalent to (13.9) and the test is implemented by plotting the
left-hand sides of these formulae as functions of E. Or more pre-
cisely, since (E|T,(E;e);€)/e and (E|To(E;€); €)/e are functions of E
and ¢ only through the ratio E/e, as functions of this ratio. The re-
sults for the case m = 3 are shown in Fig. 16 and for an infinite
number of energy levels in Fig. 17. For large systems verification of
(13.11) corresponds to approximate straight line graphs of unit
gradient. We observe that this condition is satisfied, for all E and
m = 3, by the surface, but not the bulk, formula. In the latter case

(E|Tq(E; €); €) Z (E|To(100¢;¢);e) ¥V E > 100e. This result is in
keeping with the conclusions for the continuous-energy case in
Sect. 3.6.1, as are also the curves for entropy and inverse tempera-
ture displayed in Figs. 10 and 11.

4. Part IIL Issues of contention
4.1. The equipartition theorem

From (11.16) and (13.8),

200

(B T.(E;€)ie)/e

(E | Ta(Es€);e) /e

100

\ \ \
100 E/e 200

Fig. 16. Test of (13.11) for an assembly of N = 100 atoms with three energy levels.

(13.10)
P (a 0, ifi=jand T >0,
<xj% E,x> — By(E.X) +{ To(E.X), ifi=jandT>0,
Xi o, Vijand T<O,

(14.1)

where .%;;(E, X) is given by (11.17) and To(E, X) Z T, (E,X) for T>0.
The case #;(E,X) =0, V i,j and T >0 is the ‘normal’ version of the
equipartition theorem (Huang, 1963, Sect. 7.4), satisfied exactly by
the bulk temperature Ty (E,X) and asymptotically by the surface
temperature T,,(E, X) in the thermodynamic limit. We have showed
in Appen. D that this is satisfied in the perfect fluid which has only
positive temperatures. Irrespective of whether .%;;(E, X) is zero or
not the equipartition theorem does not hold where the surface and
bulk temperatures do not agree in the thermodynamic limit, that is
to say when T < 0. The normal form of the equipartition function is
dependent on the model-dependent integral .;(E, X) being zero
for all i and j. Since this term is dependent on the boundary of " one
might suppose (Buonsante et al., 2016) that it vanishes, as in the
case of a perfect fluid, for all systems with unbounded energy,
yielding the normal equipartition result. Even if this were so, there
remains the case where the energy domain has an upper bound.
However, as for the 8, model, such systems are likely to exhibit
both negative and positive temperatures. For the normal version of
equipartition to be satisfied #;;(E, X) would need to vanish as 1/T
passes through zero from negative to positive values. Aside from
these considerations it is in any event clear that these results
cannot be called in evidence for the preference for either form of

200 +

(E | T.(E;e€);e)/e
100

(E | Ta(E;e€);¢€)/e

| | |
100 EJ/e 200

Fig. 17. Test of (13.11) for an assembly of N = 100 atoms with an infinite number of
energy levels.
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the microcanonical entropy unless one wishes to apply the result to
small systems, in which case the preference, at least in the case of
the perfect fluid, would be for the bulk entropy formulation.

4.2. The zeroth law

The zeroth law of thermodynamics is an expression of the
transitivity of thermal equilibrium between pairs of systems (see
Sect. 2.4). As we showed in Sect. 3.5.1, if systems E 5 and E g are
in thermal equilibrium then their bulk temperatures Toa (E a,X a)
and Tggp(E g,Xp) have equal expectation values in the micro-
canonical distribution of the joined system (equation (12.3)). That
this relation is satisfied by the bulk temperatures, and that the
same relationship does not hold for the surface temperatures, is
taken by Hilbert et al. (2014, Sect. VI.A.5) as an argument for
choosing the bulk temperature over the surface temperature and
consequently the bulk entropy over the surface entropy. However,
as they themselves point out, and as we have shown in (12.5), for
the surface temperature the appropriate relationship is in terms
of inverse quantities. But, from the thermodynamic point of view,
there is no reason why the equal-temperatures condition should
be expressed in terms of temperatures rather than inverse tem-
peratures. Indeed the fact that, in the thermodynamic context,
where both positive and negative temperature are possible, the
criterion (6.4) of relative hotness and coldness is expressed in
terms of inverse temperatures would incline one to prefer the
latter.

The downside to this analysis, both for bulk and surface tem-
peratures is that the systems E 4 and E g remain thermally joined. If

we wish to attribute the equivalence relation >T< to unjoined sys-
tems, then the picture, in either actuality or potentiality, is that of
them being joined and subsequently split. When S(+) applies, the
criterion for determining thermal equilibrium for E o and E g with
E o +Eg = E 1 is the maximization of (5.3). If the bulk entropy is
used this is equivalent to maximizing Q A (E 5, X A)Qg(ET —E 5, X B)
yielding the condition Tpa (X o) = Top(X ). On the other hand, if the
surface entropy is used, this is equivalent to maximizing w 5 (E a,X a)
wg(ET — E a,X ) yielding the condition T,5(X a) = Tus(X ). Both
choices of entropy satisfy the equal-temperatures condition. This
argument can also be used in the S(—) case where the temperature
conditions corresponds to minimization. However, from (12.1), in the
S(+) case T,a(X ) = T,g(X g) also corresponds to the energies of E 5
and E g taking their most probable values, which is the argument
adopted by Frenkel and Warren (2015), thus reinforcing the case for
surface rather than bulk quantities.

4.3. The second law

Hilbert et al. (2014) contend (Sect. V.B) that the bulk entropy
satisfies the “Planck version of the second law”, but (Sects. V.C and
VL. C1) that it is violated by the surface entropy. This is a reference
to the version of the second law given by Planck (1903, Sect.133)°°
and not the earlier version given by him in Sect. 116 and quoted in
the footnote on page 13. We now explore the situation beginning
first with a brief summary of the common ground. In doing so we
confine attention to systems satisfying S(+ ), keeping open the
question as to whether U(+) or U(—) (equivalently T(+) or T(—))is
satisfied, except in so far as the two systems involved are of the
same type.

66 “Every physical or chemical process in nature takes place in such a way as to
increase the sum of the entropies of all the bodies taking any part in the process. In
the limit, i.e. for reversible processes, the sum of the entropies remains unchanged.”

The subject of interest is two systems E 4 and E g, which are
thermally joined and then thermally split. As described in Sect. 2.4
from a purely thermodynamic point of view, if, with state ((E, X »)) €
B, and (E1—E,Xg))€E g the systems are thermally joined, an
adiabatic process takes place resulting in the system E 5p in state
((E1,X a,XB)) EE 4 satisfying, from (5.1),
SA(E,XA)+SB(ET—E Xp) <Sap(ET, XA XB) (16.1)

The increase in entropy is accompanied by a flow of energy in the
form of heat between the subsystems until they would be, if split, in

thermal equilibrium with each other. That is until E = E where

TA<E',XA>:TB(ET—E',XB>. (16.2)
The splitting which then occurs yields no further increase in en-
tropy. So

SAB(ET,XA,XB):SA<E,XA)+SB<ET—E,XB>. (16.3)

If E = E initially then there would be no increase in entropy during
the joining process. That is to say, equality would apply in (16.1) if
its left-hand side were at its maximum value with the two systems
in thermal equilibrium prior to being joined.

There is a difference when these processes are viewed from a
statistical mechanical viewpoint. When E 5 and E g are joined to
form E 5p there is a flow of energy between the joined parts of E ap.
But this does not cease when equilibrium is achieved, but continues
in the form of fluctuations which would also be present if & 4 and
E g were in equilibrium, that is in a state of maximum joint entropy,
when they were joined. Such fluctuations away from the maximum
entropy could be viewed as a violation of the second law. However,
as we shall see, they are approximately normally distributed with
standard deviation of O(1/+/x), making them in practise unde-
tectable for large systems and vanishing in the thermodynamic
limit. This picture is supported by the experimental work of Wang,
Sevick, Mittag, Searles, Evans (2002) who detected such violations
of the second law for small systems over short periods of time. It is
also reflected in the calculations of Lavis (2005, 2008) who showed,
for various toy models, that, starting in an arbitrary state, the
Boltzmann entropy, approached it maximum value from which it
fluctuated with frequent small (downward) fluctuations and oc-
casional larger fluctuations.

@ The Surface Entropy

The case for the surface entropy is predicated on two
assumptions:

(a) That n<E. This is inherent in the way that many authors
define the microcanonical distribution with n:= AE, the
thickness of an energy shell. If this distribution is intended to
correspond to a thermally isolated system with energy E,
then the energy shell can be regarded as modelling a toler-
ance in observation; but only if the thickness of the shell is
small relative to E.

(b) That the systems are large, in the sense described in Sect. 3.2,
where the argument for restricting attention to large systems
is made.

We now show that these are sufficient conditions for the validity
of the surface entropy. That they are not also necessary, in the sense
that (16.1) can hold where the relative sizes of n and E are more
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modestly separated is shown in the example provided by Hilbert
et al. (2014) and given below.
From (11.1) and (C.6),°’

Er
SwaB(ET,X A, X B;1) =ln{ J dE exp[Sya(E, X a; 1)
(16.4)

+SuB(ET —E,XB51m) ]} —In(n)

The argument of the exponential has a maximum at E = E, given by

TwA(E7XA> = wB(ET_EaXB), (16.5)
with
Son(EX asn) +Sus(ET— E, X g;1)
:SQ)A(EXA?”)+SwB<ET_E7XB§7}>_ 2{ <E1E )]2
o\E,ET
1) o(E]) (166
where
U(EE ) T(‘JA(EX> A(E A) wB(ET_EXB>
ST E Con(E.X2) +Cop(E1—E.X5)
(16.7)

In terms of the variable E/E and to second degree the fluctuations
are normally distributed with unit mean and standard deviation
o(E,Et) of O(1/y/x). In the large system limit the distribution is
steep about its mean allowing the integral to be evaluated and
substituting into (16.4)%%

Su(ET,Xa,XB;m) = —1In (E ) +SwA<E XAJI) +SuB (ET_E7XB§n>

n {2w[TwA (E,x) ] 2Con (E,XA> C.p (ET —E‘,XB) }

E% [C(‘,A (E,XA> +CuwB (ET — E,XB) ]

DNO| =

(16.8)

where, to make the arguments of the logarithms dimensionless Eg
is the unit energy. Even if, as in the example below, n were O(x) it
would still be the case that

L - .
SoaB(ET,X A, XB; 1) = SCUA(E’XA;’”) +SwB(ET —E7XB;77)-
(16.9)

We have, however, argued that % should be small; in particular from
(16.8) if n < Ey

57 1t does not affect the argument in any way to choose the same 1 forZ 4,E g
andE pp.

68 This is, of course, just the same as the application of Laplace's method, as used
in Sect. 3.6.1.

SoaB(ET,X A, XB; 1) >swA(E>XA§7I> +5mB(ET ~EX B;n)
> Soa(E, X a;m) + Sus(ET — E, X B3 1),
(16.10)

with the first inequality replaced by equality only in the thermo-
dynamic limit. As with the thermodynamic results (16.1)—(16.3),
the surface entropy results (16.5), (16.9) and (16.10) apply both to
positive and negative temperatures.

In opposition to this account Hilbert et al. (2014, Sect. V.C) assert
that “there is no strict relation between the [surface] entropy of the
compound system and the [surface] entropies of the subsystems
before contact” because we have no information about the relative
sizes of the two terms on the right-hand side of (16.4), meaning in
particular the size of the constant 7 (for which they use the symbol
¢). They illustrate this point in Sect. VI.B by an explicit calculation
for the case where, adapting to our notation slightly and dropping
dependence on a deformation variable X, E 5, and E y are identical
systems with

(659 )E(ETI:‘), 0<E<Eq

W(E) = 3 (16.11)
0, otherwise.
Substituting into (16.4)
6104
Sunp(Eim) = In( 2T (16.12)
5E+
and, since by symmetry E = JE 1,
= - _ 977292_1_
Son(Esn) +Sun (E1 — Esm) = 1n< e
= Spa(E;m) + SeB(ET — Es 1),
(16.13)

with the conclusion that (16.1) is not satisfied if n > 8E 1/15. Hilbert
et al. infer from this, that the “only way to avoid this problem in
general is to always use an infinitesimal [7] and a DoS that exactly
gives the number of states at the energy in question (i.e. the exact
degeneracy) devoid of any energy coarse-graining,”

It would seem to us that the inference Hilbert et al. draw from
this example is well in excess of that which can be made from the
calculations. The condition 7 <8E /15 does not place very severe
conditions on either the smallness of 5 or the largeness of E 1; much
less than those imposed by(a) and (b) above.

® The Bulk Entropy

The case made by Hilbert et al. for the bulk entropy rests on the
‘proof’ in Sect. V.B that
QA(EAXA)QB(EB,Xp) <Qap(Ea+Ep,Xa,XB), (16.14)
(their equation (48)). However, as has been pointed out by
Swendsen and Wang (2016, Sect. VI.3), and as is clear from our
derivation of (C.9), strict inequality applies in this relationship
yielding

Saa(E; X ) + Sap(ET — E, X B) <Soas(ET,X A, XB), (16.15)
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which, as we have shown above, agrees with the relationship for
the surface entropy for systems which are large but not at the
thermodynamic limit. Thus the case where equality applies is left
unresolved for the bulk entropies. For a power-law density of states
this gap is closed by Hilbert et al. (2014, Sect. VIA3), who show
equality in the thermodynamic limit. However, a rather more
general approach mirroring the development in (16.4)—(16.9) can
be used beginning with (C.8) rather than (C.6). Then we have

Er
SQAB(ET,XA,XB)IH{ JdEexD[swA(E»XAJ)+SQB(ET_E7XB)]}'
0
(16.16)
And from (11.6), (13.7) and (13.8),
L : .
Sans(ET,X A, XB) = Sy (vaN 1) + Sop (ET - E7XB)
L \ .
:SQA(E,XA>+SQB(ET—E,XB)7 (16]7)
SQAB<ET,XA,XB>>SO,A(EZXA;1) +Sap(Ev~E.Xa)
TL ° o
% son(EX) +San (E1 - E.Xa)
> Soa(E, X a) +Sae(ET — E, X B), (16.18)
where
° o TL o
Tas (Ev~ EXn ) = Toa (EXa)  Toa (E.X4 ) (16.19)

So, by a slightly less straightforward calculation, the bulk entropy
can be shown to satisfy the same large-system thermodynamic-
limit results as the surface entropy. However, of course, this applies
only to positive temperatures, although, unlike the case of the
surface entropy, the inequality (16.15) is not restricted to large
systems.

4.4. The spin-% example of Campisi (2015)

The spin model introduced in Sect. D of Campisi's paper with

Hamiltonian®’
A cp = 7B[J,(HT 71’“), (171)
where u is the magnetic moment of the spins and B is a magnetic
field, is mathematically equivalent to 9B,, the discrete energy system
discussed in Sects. 3.3.2, 3.4.2 and 3.6.2 with energy levels {0, ¢}.
However, from a statistical mechanical point of view there is an
important difference. In the B, model ¢ in (10.6) is an internal
parameter, and, although we used the micromechanical and Gibbs
distributions, there was in fact no controllable intensive mechanical
variable, whereas in (17.1) the role of ¢ is played by — 2Bu, where B
is a controllable intensive mechanical variable.

Rather confusingly Campisi relates his Hamiltonian .7 cp to his
energy E ¢ p using an expectation, that is (7" cp) =E cp. However, of
course, the substance of the discussion uses the micromechanical
distribution, where the mechanical energy is an independent

69 We distinguish variables which he employs with a different meaning from ours
by using a subscript ‘CP’ and enclose his equation numbers in square brackets.

variable equal to the value of the Hamiltonian which is fixed
without need for expectations. To simplify the discussion we shall,
then, just refer to the energies, which for the present work are one
variable E and two parameters 1 and e, and for Campisi are two
variables E ¢p and B, and one parameter ¢ cp. Given that the up-spin
state is identified with the energy level £>0 so that X = n; = n;
and B<0,”°

- N ke
E=Ecp —B,LLN, X_2 - ZB,U.'

(17.2)

E=eX=—-2Bun;, e=—2Bu,

In the ®B;; model the entropy is a function of E through its depen-
dence on X = E/e; so

1 a5(X) 105(X)
T~ oF ¢ oX (17.3)

In Campisi's model the entropy is a function of E -p and B through
its dependence on X; so

1 a5X) 1 a5(X) ﬁ _05(X)  Ecp 05(X)
Tcp - aEcp B ZB,LL ox ’ Tcp 0B 232,11, ox ’
(17.4)
where ¢ is the magnetization, which from (17.4) satisfies
M = —E cp/B, (17.5)

which he otherwise shows is the correct relationship between
magnetization, energy and magnetic field. Campisi derives (17.4)
and (17.5) (respectively [32] and [33]) for the bulk entropy, but not
by the surface entropy. The root of the problem is in the way that
the surface entropy parameter, which we denoted as 7 and which
Campisi in [1] denotes as ¢ (and which we for the sake of clarity
denote as ¢ ¢ p) is handled. In B,, the density of energy states is the
number of energy states per unit of e giving (10.9) and a similar
relationship is given in Campisi's equation [12], where 2u|B| is used
as the divisor. However, the factor ¢ cp in [1] is left intact yielding

Sw(E cp, B) = S »(X) + In(e cp/2u[B|) (17.6)
and hence his [33]
M= 7@. (17.7)

In Sect. 3.4.2 we have argued for the identification 1 := ¢ in the ¥,
model both by comparison with the continuous energy case and by
reference to Boltzmann's original form for his entropy. This iden-
tification in the form e ¢p := 2u|B| for Campisi's model resolves the
problem exposed in (17.6). This means that the magnetic field here
has a dual role. On the one hand it is the mechanical intensive
controllable variable and on the other it fixes the spacing of the
energy states. This is an artifact of this particularly simple model
which would not be present in, for example, the Ising model, where
the change in energy due to a single spin flip would contain more
that just a field-dependent contribution.

An alternative way to solve the problem is that adopted by
Abrahm and Penrose (2017). They effectively take n := 1 so that the
multiplication by 7 and subsequent division leading to (11.23)
would not occur. Equivalently in the spin model & cp := 1 and there
is no division by 2u|B| in [29]. The rationale for this approach could

70 A similar mapping between the models applies whenB> 0.



D.A. Lavis / Studies in History and Philosophy of Modern Physics 67 (2019) 26—63 57

be based simply on the reason for introducing a constant of
dimension ] into the surface entropy. For a continuous-energy
system the density of states is of dimension J~! and an energy-
dimensioned quantity is needed to make the argument of the
logarithm dimensionless. However, for a discrete-energy system
the density of states is just a dimensionless counting of states and
such a constant is unnecessary. Whichever of these arguments is
used the effect as Abrahm and Penrose comment is to make this
spin example “neutral between the “Gibbs” [(bulk)] and “Boltz-
mann” [(surface)] entropies.”

4.5. Thermodynamic consistency

In this case we consider a system where x := (p,q) with an
evolution determined by Hamilton's equation (C.11). The relation-
ship (C.18) is the condition for a function W(E, X) to be an adiabatic
invariant in the thermodynamic sense, which means that W(E,X) =
W(S(E,X)). Substituting this form into (C.18), combining with (C.15)
and using Table 3 gives

9E(S,X) _ OS(EX) _ /o7 (p.q; X)
= EEX) = TEER < (MR x)

(18.1)

Equality between the first three terms in this relationship follows
directly from (8.1). So the interest is in equality between the third
and fourth terms. This implies that S(E, X) is an adiabatic invariant
in the mechanical sense defined in Appen. C, where the analysis
was predicated on S(E, X) being an invertible function of E; that is
on temperature having a single sign. This condition is satisfied by
the bulk entropy with the bulk temperature being always positive
and from (11.5), (11.6) and (11.15) it can be seen that the bulk
functions satisfy the equality between the third and fourth terms of
(18.1). That a similar result does not hold for the surface entropy is
part of the argument advanced by Dunkel and Hilbert (2014a) for
rejecting the surface entropy in favour of the bulk entropy. How-
ever, as will be clear from the following argument advanced by
Frenkel and Warren (2015),”! the situation is rather less clear cut.
From (12.10) and (12.16),

<M T,X>exp( — A(T,X)/T)
axX
Emax . X
_ J <% E,X>exp [~ Ao(E:T,X;m)/T) dE,  (18.2)
0
where

Au(E;T.X;1) = E — Sy(E.X; )T. (18.3)

It was showed in Sect. 3.6.1, that, if S, (E,X;n) is a concave non-

negative function of E,
Co(E.X;) := —Aw(E;T,X;m)/T = Su(E,X;n) —E/T has a steep
maximum at

E =E*(T,X) satisfying T, (E*,X) =T. (18.4)

These conditions can be satisfied when T >0 and S(E, X) is mono-
tonically increasing for E< [0, Emax] and when T <0 and S(E,X) is
monotonically decreasing for E€[0, Emax]. In the latter case the
condition S, (0,X;n) = 0, which we assumed in Sect. 3.6.1 must be

71 A rejoinder to this paper, which was first published on line in 2014, by Dunkel
and Hilbert (2014b) does not seek to challenge this argument.

violated. Whilst this does not necessarily exclude the consideration
of negative temperatures’? our main aim is to compare the surface
and bulk entropies and we now restrict attention to the case T >0
where, from (12.17) and (18.2)—(18.4),

E* X >

§c(T.X) = <W‘TX> L <M

0X
ZE(E* X) = —T, (E*.X) 765“’(56;(’)(; m_ £, (E*.X)  (a),
— (6% ) = Toer %) SEXT o ) )

(18.5)

The bulk entropy and temperature satisfy the consistency condition
(18.1) exactly and the surface entropy and temperature satisfy it in

the thermodynamic limit, corresponding to the pair of L and=in
(18.5) (a) and (b) respectively. However, of course, when the com-
parison is made with the canonical distribution both cases contain

the relationship L This is to be expected since the intensive var-
iables £ (T, X), £,(E,X) and £q(E,X) are uncontrolled in their
respective distributions, coinciding when E = E* only in the ther-
modynamic limit when E* = (E|T,X).

4.6. Conclusions

It is commonly the case that both the internal energy and entropy
of a system do not decrease during an adiabatic process. The situa-
tion where the internal energy decreases and the entropy increases
is associated with negative temperatures and, as we have shown in
Sect. 1.1, there is good evidence that this behaviour occurs in some
real systems. Entropy decrease in adiabatic processes is associated
with negative heat capacity at constant deformation variables and, as
we have briefly indicated in the footnote on page 13, there is also
evidence that this can occur albeit in rather exotic circumstances.

The account of thermodynamics by Lieb and Yngvason (1999) is
based on a set of axioms and a definition of entropy, which we
provide in Appen. A. Together these exclude the possibility of en-
tropy decrease during adiabatic processes. However, the argument
for excluding energy decrease, and thus negative temperatures, is
informal and effectively consists of the choice, on physical grounds,
of supposing that we live in a ‘world’ in which temperatures are
always positive. In this work we are interested in the possibility of a
system undergoing an adiabatic process between states of negative
and positive temperature. This implies that the thermodynamic
space of the system must be a union of subspaces with opposite signs
of the temperature. We have shown how the Lieb and Yngvason
formulation can be modified to accommodate such a decomposition.

The same decomposition scheme can also be applied to the
approach based directly on Carathéodory's version of the second
law, which allows both internal energy and entropy decrease in
adiabatic processes. Given this rather general picture with both
signs for the temperature and increasing and decreasing entropy in
adiabatic processes it is of interest to explore the modifications
needed to the Kelvin—Planck (heat-engine) and Clausius (heat-
pump) versions of the second law. By examining in detail the
behaviour of a cyclic sequence of processes, we have shown that the
Kelvin—Planck but not the Clausius version needs modification
when negative temperatures are allowed. However, providing also

72 In the case of an entropy profile like that shown in Fig. 6 the energy range can
be restricted to that within subsystem E[—+] for which S(E, X) is invertible.
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for the possibility of entropy decrease involves modifications to
both forms of the law.

In the second part of this paper we addressed the problem of the
way that negative temperatures can be exhibited by statistical me-
chanical models. Work on this has largely concentrated on thermally
isolated systems, narrowing to the rival claims of the surface and
bulk forms for the entropy of a microcanonical or micromechanical
system. This dispute is fundamental, since a range of thermodynamic
behaviour with a negative temperature is possible using the surface
entropy but not using the bulk entropy. A key to the resolution of this
question lies in the equivalence of distributions in the thermody-
namic limit. In this case the equivalence is between the micro-
canonical or micromechanical distribution on the one hand and the
canonical or Gibbs distribution on the other. We have shown that
both the surface and bulk entropies, and temperatures, satisfy this
equivalence in the thermodynamic limit for positive temperatures.
For negative temperatures equivalence continues to hold for the
surface quantities, but fails for the bulk quantities, where the inverse
bulk temperature is asymptotically zero. These results are supported
by explicit calculations for the B,; model. In Part III we have
addressed the various claims that the surface entropy violates basic
requirements of thermodynamics. Much of this discussion concen-
trates on systems satisfying Hamiltonian dynamics where the energy
has no upper bound and the temperature is always positive. Here we
do not dispute that the bulk entropy is thermodynamically consis-
tent. What we have shown is that in all cases this is also true for the
surface entropy in the thermodynamic limit.
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Appendices

A. Supporting Material for Sect. 2.3.1

A
In the approach of Lieb and Yngvason adiabatic accessibility <,

defined in (3.1), and recoverability >A<, defined in (3.2), satisfy the
following axioms:

Axiom A—1. Reflexivity: X 2 X.

Axiom A—IL Transitivity: X2 Y A Y2 7z = x2 z.

Axiom A—IIl. Cartesian-Product Consistency: XQ Y A X’Q Y
- x.x)2 vy

Axiom A—IV. Scaling Consistency: X 2 Y = X 2 AY, ¥V 1>0.

A
Axiom A—V. Splitting and Recombination: EsX> < ([1 — A]X,AX)
€E(1- ) x E(A), V A€(0,1).

Axiom A—VI. Stability: (X,eX") 2 (Y,eY'), for some X’ and Y’ and a
sequence of values of ¢ tending to zero, = XQ Y.

Axiom A—VII. Convex Combination: E(1— ) x E())=([1 - AX,
W)2 [1- X+ IYEE, V X,Y<E and 1€(0,1).

Of these axioms all but A—V and A-VII involve adiabatic acces-
sibility between states of a single system; they also exhibit a certain
‘common-sense’ quality in that if one were considering processes
within a system or within Cartesian products or scaled copies of a
system, this is how one would expect adiabatic accessibility to

behave. The exceptions to this are Axioms A—V and A—VII, which
both involve adiabatic accessibility between a system Z and
E(1—2) x E(%) for some A€(0,1). They can be regarded as pre-
cursors of Lieb and Yngvason's thermal contact and thermal split-
ting axioms (T—I and T—II, Lieb and Yngvason, 1999), p. 55) and
A—VII is of crucial importance in the establishment of the proper-
ties of forward sectors. In particular it is necessary to prove:

Theorem A.1. (Lieb and Yngvason, 1999, p. 45)
If,fOl’ X1, Xy, X3€E, Xy : = [1— A]X1+ )\X3, /16(0,1), then

A A
X, < X3 = X; < X5.which we use in the discussion in Sect. 2.3.1. It
is also useful at this stage to introduce the following logical
statements:

A
ACP(E) := {vxxea, X©X’}

: the adiabatic comparability hypothesis, (A1)
A
UAI(E) := {VXEE, 3X yx €E such that X< <X UX}
: the upper adiabatic irrecoverability hypothesis, (A.2)
A
LA|(E) = { VXeE, 93X x€Esuchthat X x< <X}
: the lower adiabatic irrecoverability hypothesis,  (A.3)

where X yx and X |x are dependent of X. The truth of both UAI(E)
and LAI(E) are asserted by Lieb and Yngvason's thermal Axiom T-IV
and it can also be shown (Lieb and Yngvason, 1999, Thm. 2.9) that
UAI(E)= Cth—I(E) with the converse holding if the interiors of all
forward sectors .7 ’x defined in (A.4) are non-empty. The truth of
the adiabatic comparability hypothesis ACP(&) is closely related to
the structure of forward sectors.

A.1. Forward Sectors
The set

A
T x = {X’ X<X’}, is the forward sector of X.
'7GX = {)(IE,‘:/’7 X‘ 3 ./VXr Cc.7 X}
0.7 x = {X/ e X‘ A '/VX’ c.7 X}

is the interior of .7 x,
is the boundary of .7 y,

(A4)

where .7 x CE is an open neighbourhood of X. And the following
statements summarize the results of Lieb and Yngvason (1999) for
forward sectors:

(i) From Axioms A-I to A-VII (and particularly from A-VII), .7 x is
convex (Lieb and Yngvason, 1999, Thm. 2.6).
(ii) From UAI(E), 8.7 x is a relatively”® closed set containing X.
(iii) From UAI(E) and the assumption that 8.7 x has a unique
tangent plane ® x at X (Lieb and Yngvason's Axiom S—II),
7 x#@ (Lieb and Yngvason, 1999, Thm. 3.2).

From (ii) and (iii), .7 x is a relatively closed proper subset of E.

The set of forward sectors {7 x|X€E} is nested if V X, Y&
exactly one of the following is satisfied: (a) .7y = .7 x, (b)
FyCTF % ()7 xCTy.

73 The need for relative closure is because part of the boundary of 8.7 x may not
lie inE.
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A.2. Entropy

As has already been indicated, important differences between
the Carathéodory and Lieb and Yngvason approaches to thermo-
dynamics are that the former establishes the existence of the en-
tropy function with the appropriate properties including the
possibility that either S(+) or S(—) is true and the latter provides an
explicit definition of entropy which applies only to the case where
S(+) is true. Here we provide a brief summary of the Lieb and
Yngvason account in which they showed that there is an entropy
function S, which is unique to within an affine transformation,”*
over a family of systems closed under scaling and Cartesian prod-
uct formation and which satisfies

e For X, YeE,

X<<Y o SX)<S(Y),

A (A.5)
X><Y < S(X)=S5().
e For XeE and X E(A),
S(AX) = AS(X). (A.6)

(11— WX, X)) 2 ([1 - W)Y, 1Y)

(11— 2%, 29) 2 (1 — X, Y )eoh < p, (A.9)
(Lieb & Yngvason, 1999, Lemma 2.2),
Su(X 1, X 0)<Z;(X L, X y)ed < . (A.10)

(iv) It follows from (A.10) that, for fixed X | X y € E, there eXists a
maximum A such that Xe=;(X ,X y) and

Sz(X|1X L, X y) == sup{AIXEZ;(X . X y)} (A11)
is the definition of local entropy (Lieb & Yngvason, 1999, p. 26).

(v) Given ACP(E(1 — A) x E(A)) and UAI(E), Sz (X|X L, X y) exists
and is finite with

A=Sz(X|X 1, Xu)e (A12)
X< (1= X 1, 2X y), (A13)
(Lieb & Yngvason, 1999, Lemma 2.1 and 2.3).
(vi) For X,X'.Y,Y'€E,
(A.14)

[1— wSe (XX 1, X y) + uSe(X'1X 1. X y) < [1 - ¢1Sz(YIX L. X y) +wSz(Y'X L, X ),

e For X, EEl,Xz EEZ and (X],Xz)EE] X Ez

S((X1,X2)) = S(X1) + S(X3). (A7)

The development has two stages. The first is to establish a local
entropy function Sz for any system E, which is dependent on

A
X |, X yeE with X | < <Xy and the second is to derive a general
entropy function S, which applies to all the systems of the family
with in each case just one choice of a state where the entropy is
zero. In the first stage it is shown that:

(i) From ACP(E), UAI(E)

and LAI(E), 3 XeE with

A A
X <<X<<Xy.
(ii) From UAI(E) and A—VII

X, Xy) =
is a convex set.

XeE (A.8)

0 fA]xL7MU>QX}gE,

A
(iii) Since V X, Y E with X< <Y

74 Two function which are equal to within an affine transformation are said to be
WAT—equal. If all functions satisfying particular conditions are WAT—equal, then
any one of these functions satisfying the conditions is said to be WAT—unique with
respect to these conditions.

(Lieb & Yngvason, 1999, Thm. 2.2), which generalizes (A.5) for the
local entropy.

(vii) The local entropy is the WAT—unique function satisfying
(A.14) (Lieb & Yngvason, 1999, Thm. 2.3).
(viii) For X,X' €&, from A—VI],

(1—wSz(XIX 1, X y) +uSz(X'|X ,X y)

< Sz([1— uX + pX'|X L. X y); (A.15)
S=(X|X 1, X y)is a concave function on E (Lieb & Yngvason, 1999,
Thm. 2.8).

(A13) can be regarded as a mapping A = A(X) from E to R which
also provides a definition of local entropy. It is many-one since if
A = A(X) is satisfied by X and 1 it is also satisfied by all X' €0.7 x for
the same 1; the boundaries 8.7 x of forward sectors are adiabats
(with respect to the local entropy and any entropy WAT—equal to
it).

The next stage is to use this local entropy to define an entropy
function S(X) for all the systems of the family which is independent
of a particular choice of X | and X y in any E. This is done by way of
a reflexive, symmetric and transitive relationship of calibration
between systems (Lieb & Yngvason, 1999, Thm. 4.7). A single sys-
tem E 7 is then chosen to be the calibrator for the whole family of
systems and in the local entropy the single system is replaced by
the Cartesian product E x B 7, with X |, X y €E, replaced, respec-

tively by (X,X ZL) and (X,X zu),wheref(eE andX 7, Xzy<s8,

and X replaced by (X, X 7). Thus we have (Lieb & Yngvason, 1999, p.
31)
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SX) == Sz.x, (XX 2)| (X X2), (XX 20) ). (A.16)

It can then be shown not only that S(X) satisfies (A.14), meaning
that it is WAT—equal to the local entropy for any E, but that it is
concave on E and satisfies the scaling and extensivity conditions
(A.6) and (A.7) (Lieb & Yngvason, 1999, Thm. 2.5). Also, from (A.13),

S (5() = 0 sets the zero point for the entropy in eachE.

B. Supporting Material for Sect. 2.3.2
For a vector set of functions £(X) : = (¢©X),£V (X),...
let (&) := £(X)-dX. Then:

Definition B.1. &(£) is an exact differential if 3 ¢(X) such that
&(X) = Vo(X) and hence that Z(§) = do.

LM (X)),

Definition B.2. The curve Z(Xp,X;)cE from X, to X; is
7 (§)—conforming if every differential element dX of the curve
satisfies 7 (§) = 0.

The following result is due to Carathéodory (1935, p. 240):
Theorem B.1. If in every neighbourhood ./" x of a given X € E there
exist points that cannot be reached along a piecewise smooth

7/ (§)—conforming curve then there exists a function A(X) making
7(§/2) an exact differential.

It was, however, pointed out by Bernstein (1960) that the use of
this theorem by Carathéodory is incomplete, since the local nature
of Thm.B.1 is not fully taken into account. He proposed and proved
the modified (local) theorem that:

Theorem B.2. If
£(X)-£(X)>0, VX€EE,

then, given Xp€E,

‘SDréET - X;'A(X a;Xa)— 7 B(XB; X))
T T

- J dE J dE 5 6P (Ep — 7 a® asX )0 (E g — 7 p(x5:X )0 (Ex —Ep — Es).

0 0

(i) In every (open) neighbourhood .7 x, of Xo, 3 X’ which cannot
be joined to Xy by a piecewise smooth & (§)—conforming curve
lying entirely in 1" x, .

E Er

-

0 ap(ET.X o Xp) = J dE j dE 5w A(E A X )0 5(E 5. X )0 (E1 — Ep — Ep)
0

0
T

E
= | dEAwA(E A, X p)wB(ET —EA,XB)
0

iff

(ii) In some neighbourhood of X, there is a function A(X) such that
Z(&/2) is an exact differential.

C. Results for the Continuous-Energy System

Using
AT (XX)Dr g ey OE = 7 (%:X)) 07 (%,X)
Té (E—7(x%,X)) = 7 o7
0O -7 (%X))
-
(C.1)
where { : = X, or x;, one of the components of x, and (10.3),
07 (%;X) <Dr . _ [9O(E - 7 (%, X))
r r
__0Q(E,X)
= —YT (€2)
and
ijL/ ;}z;x)éDr(E _ 7 (x:X))dT = —ij—a@)(E _aj,/ *:X)) g
r r
. j)JG)(E — #(x:X))dT — Ja OE ;Xj/ ®X)] 4p
r r !
= 65(i — j)y Q(E.X) — Ja XOE - 7®X)] 4
0X;
r
(C3)

Consider now two systems E 4 and E g which, as described in Sect.
3.5.1, are thermally joined to form the system E , g with fixed total
energy E 1 and”®

7 aB(Xa, Xg;Xp, Xp) = A(Xa;Xa) + 7 5(XB; XB). (C4)
Then

(C.5)
giving from (11.13),

(C6)

75 This result can be readily generalized to the case where the one deformation
variable for the total system isX 4 + X g, implying a mechanical as well as a thermal
interaction.
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From (10.4),

Er

v as(ET.X a0, X5) = j dE 0 A(E A.X A)V B(ET — E 0. Xp)
0
+

w A(0+ X )(JJ B(ET XB) (C7)

Eq
Qap(ET,X A, XB) = J dE a0 A(E A, XA)QB(ET —EA,XB),
0
(€8)
and

(Ea+Es)

Qap(Ea+Ep,Xa,Xp)= dE AwA(E' A Xp)Qp(Ea+Eg—E p.Xp)

0
Ea

> J dE AwA(E A Xp)Qp(EA+Eg—E o.Xp)
0
Ea

> J dE AwA(E A.XA)Qp(Ep.Xp)=Qa(Ea.Xa)Qp(Ep.Xp)
0
(C9)

The strict inequalities in this result are important for the discussion
in Sect. 4.3 and arise from the positivity of the integrand and the
fact that Q g(E, X ) is a monotonically increasing function of E.
Suppose now that the flow ¢; is a group of automorphisms
determined by Hamilton's equations with x : = (p,q) €T, where p
and q are the momentum and configuration variables. First
consider a path #€ & given by (E(A),X(4)) with A0, 1]. Now as-
sume that S = S(E,X) is known and invertible with respect to E.
Then the thermodynamic state of the system can also be specified

by points (S,X)=Z, and there is a related path % €&’ given by
(S(E(4),X(4)),X (%)) with A=]0, 1] along which

dE  0E(S,X) dS 0E(S,X) dX

@~ e A X dn (C10)

Suppose that the parameter 1 is related to the time t by A :=t/7
with te[0, 7]. At time t the phase point lies on the energy
hypersurface S(E(t/7),X(t/7)), given by (10.1), and the flow ¢; in T’
is no longer autonomous. With the initial value
(p(0),q(0)) ==(E(0),X(0)) the phase point will trace out the path
2rel terminating at (p(1),q(1))e=(E(1),X(1)) and determined
by Hamilton's equations

4= p7Z(p.q:X(t/7)),  P=-VeZ (P.q:X(t/T)). (C11)
As t increases in the range [0, 7]

dE d7 o7 dX o7 dX

@ dr - P Yed Tt o @ e dr (C12)

The only microscopic phase dependence in (C.12) is in the Hamil-
tonian. We can therefore take its microcanonical expectation to
give

dt X dt (C13)

From (C.10) and (C.13),

0E(S,X) dX aZ/(p q,X) dX ~ OE(S,X) dS (C.14)
X dr oS dt )

If the path .’ in &’ lies on a surface of constant entropy

0E(S,X) /0.7 (p,
e < ax E. X (C.15)

Consider now a function W(E,X) on E

o Along the path %} in &, lying on a surface of constant entropy,
from (C.15),

dw  dx {aw 9E(S, X) GW}

dr T dt X X
_dX (oW /0.7 (p, q; X) ow
~dr { <T E X> oX } (C16)
e Along the path 2 in T, W(E, X) will vary, with E(t/7) = 7 (p, q;

X(t/7)) varying as the Hamiltonian varies and X varying ac-
cording as X(t/7) varies. Then, from (C.13),

dt T 9E df T oX dt _ dt axX axX
(C17)

dw _ow dE oW dx dX{M<aW’(p,q;X)’EX> E)W}

It follows from (C.16) that a function W(E, X) is constant along a
path on an adiabatic surface iff

oW W /o7 (p,q;X)
X = OF <76X 'E,X> (C.18)
Such a function could be called an adiabatic invariant in the
thermodynamic sense. On the other hand a global constant of
motion Z(p, q; X(t/7)) is an adiabatic invariant in the mechanical
sense if it is conserved along almost all paths .2 asymptotically in
the limit 7— oo (Kasuga, 1961). It follows from (C.17) that W(E, X),
where the dependence on p and q is through E = 77 (p,q; X), is such
an adiabatic invariant in this sense if it satisfies (C.18).

D. The Perfect Fluid

In this case the thermodynamic relationship (8.1) for a fluid in a
three-dimensional cubic box 7 of side L takes the form
TdS = dU + PdV, (D.1)
where V := I3 and P are respectively the volume of 7" and the
pressure of the fluid. The microstate of such a system of N
particles of mass m and chemical potential u is x:= (p, q) T,
where p and q are the 3N-dimensional momentum and configu-
ration vectors, respectively, with the components of q restricted to

the range {— %L,%L} . The number of particles N is fixed as the size

parameter and V is the sole deformation variable. The Hamiltonian
is implicitly dependent on the configuration vector q, and hence on
the volume V, through the restriction of its range, and explicitly on
the momentum vector in the form 7 (p;V;N):= p?/(2m). The
phase space element factors in the form dI" := dI'qdI", and it is not
difficult to show that
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d=g dE

P INZ(p;ViN)| (D-2)

,/ A3 dE,

where d=f is the element of the energy surface =(E;N) given by

(10.1). The area of this 3N-dimensional hypersphere is 2{27rmE}%N/

[F (%N) \/ZmE] and, from (10.2), (10.3), (11.1) and (11.5),

w(E,V;N) = NEN TK(WV;N)N,  Q(E V;N) = BENK(V;N)]N,
(D.3)

So(E,Vin,N)=In (3;)’5’7) +%Nln(£)+N1n[K(V;N)},

Sa(E,V;N) :%Nln(E) +NIn[K(V;N)], (D.4)

where

3 1N
o 2mm)zN
K(V;N) := V{h3NF(N+1)F@N+1)} : (D.5)

For this model E is the kinetic energy of the particles, lying in the
range [0, ), and the surface and bulk temperatures

3 -1 3 \!
T(U(E,V;N):E(—N—l) , TQ(E,V;N):E(—N) ,

2 2
(D.6)
are positive, with heat capacities
o (OT(E,V;NN T3
Co(E,V;N) = (T 7§N—1,
o (TQ(E, ;N\ 3
ColE. Vit = (RGN (D.7)
and, from (D.1), pressures
2NE 2E
Py(E,V;N) “VBN-2) Po(E,ViN) =3¢ (D.8)

Suppose that x; and x; are any two components of the momenta of
any of the particles of the fluid. Then xj%,jiv;m = xjx;/m. The
momentum of the k-th particle can be expressed in terms of the
Euler angles §%<(0,27), ¢®e(0,7] as p® := p®(cos(6¥),
sin(0%)cos(¢®)), sin(6%)sin(4®)). Thus, in computing the micro-
canonical expectation value in (11.16) for i=j, integrations will

occur over the periods of harmonic functions yielding a result of
zero. In the case i =j

7 (p;V;N) 1/l y. 2
<x'7axl E\ViN) =—(x}|E.ViN ) = s( E|E.V;N
2
=35 E = Ta(EViN),
(D.9)

showing, from (11.16) that .z;;(E, V;N), given by (11.17), is, in the
case of the perfect fluid, zero for all i and j.
From (12.11) and (D.3), the canonical partition function is

0o

Zc(T,V;N) = %NVN[K(VN)}N [E%N‘1exp(—E/T) dE

F( N+1)TN[I<(V NN (D.10)

and, from (12.13) and Table 3,

Sc(T,V;N) = NIn[K(V;N)] + In [F GN + 1)} + %N In(T) + %N

(D.11)

with

Sc(Tw(E,V;N),V;N) :%Nln(E) +NIn[K(V;N)]+In [I‘ (%N+ 1)}

)}

Sc(To(E,V;N),V;N) =%Nln(E) +NIn[K(V;N)]+In {1‘ @N+ 1)}
nfion ()

The expectation value of E in the canonical distribution is (E|T,V; N)

=3NT, so that

(D.12)

(D.13)

T (ET.ViNy Vi) = (35 )T,

IN_3 To(E|T,V;N),V;N) =

(D.14)

In the thermodynamic limit when N — oo, V — oo, with N/V finite,
In [FGNH) } TL; {mGN) -1 } and In[K(V;N)] = In(V)

1 (‘;7;:2") —2In(N)

(D.15)

Su(E,V;N) Z So(E,ViN) 2 S (T, (E,V;N),V;N) £ S (To(E, V; N),
V; N) give the Sackur-Tetrode equation for the entropy of a perfect

fluid (Huang, 1963, Sect. 6.5), with T, (E,V;N) = To(E, V;N).
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